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Abstract— Data warehouses have become, nowadays, at the 

core of decisional systems. The Index Selection Problem (ISP) is a 

challenging problem in data warehouses physical design. 

Regarding the NP-hard nature of this problem, existing solutions 

rely heavily on heuristics which constitutes a major drawback. In 

this paper, we propose a novel exact approach to the ISP based 

on Constraint Programming (CP). We formulate the problem as 

a Constraint Optimization Problem in a declarative way, then its 

resolution is automatically supported by a generic CP solver. Our 

proposed approach has also the advantage of being declarative, 

flexible, and expandable as it allows incorporating various kinds 

of user preferences, expressed as constraints, as well as choosing 

or defining new search strategies. Experimental results confirm 

our expectations and show that our approach scales well enough 

to solve much larger realistic instances in a faster and more 

effective way compared to well-known state-of-the-art 

approximation approaches.   

Keywords— data warehouses; bitmap join index; constraint 

programming; index selection problem; constraint optimization 

problem; decisional systems.  

I. INTRODUCTION  

This Data warehouses (DWs) are at the core of today’s 
decision support systems. Their main role is to transform the 
data they contain into strategic indicators for smart decision 
making. Such indicators are expressed by means of complex 
analytical queries that often scan huge volumes of historically 
collected data. Indexing remains one of the most effective 
techniques used by the data warehouse administrator (DWA) 
for data access improvement since it allows finding the desired 
information without the need to scan the whole data [1]–[4]. 
Particularly, bitmap join indexes (BJIs) [5] have proven to be 
an efficient solution suited to avoid costly join operations by 
performing fast binary operations on the index level rather than 
scanning the data [3]. Furthermore, the binary nature of BJIs 
leads to their size being significantly smaller and makes them 
highly amenable to compression and encoding.  

Although BJIs can significantly improve the query 
processing performance, selecting just those that are interesting 
is yet a big challenge. In the literature, this is known as the ISP 
which is proven to be NP-hard [6]. The complexity stems from 
the potential huge search space that the DWA faces. Indeed, 

with k attributes, that appear in a given workload,         

different indexes can be considered, leading to           
possible index configurations [4]. Consequently, the increase in 
the number of attributes triggers a rapid growth of possible 
indexes, leading to a large search space. 

In this particular context, works devoted to solve the BJI 
selection problem (BJI-SP), may be clustered into three 
categories: heuristic-based algorithms [7], metaheuristics-based 
algorithms [1], [8]–[11] and data mining-based techniques [4], 
[12]–[15]. Heuristic-based approaches [7] try, in a first phase, 
to prune its combinatorial search space into a small subset of 
possible candidate indexes. Then, in a second phase, greedy 
search algorithms (bottom-up or top-down search) are used to 
recommend a final set of indexes regarding a storage budget 
specified by the DWA. Despite their simplicity, these 
approaches rely heavily on heuristics and does not guarantee 
the optimal solution. Indeed, in case of severely limited disk 
space, such approaches may result in not considering some 
very good indexes [16], [17]. Classical metaheuristic 
algorithms have also been used to solve the BJI-SP in DW 
context. Among these methods, we can mention the Ant 
Colony Optimization [8],  Genetic Algorithms [10], Artificial 
Immune Systems [9], Binary Particle Swarm Optimization [11] 
and Multi-objective Evolutionary Algorithms [1]. Other 
directions to tackle the BJI-SP have been proposed and are 
based on data mining techniques [4], [12]–[15]. The intuitive 
idea is that the importance of an index is strongly correlated 
with its appearance frequency in the workload.  Thus, these 
approaches use the concept of closed frequent itemset [14] or 
the maximal frequent itemset technique [4] to efficiently prune 
the initial search space. A second phase is necessary for 
selecting the best index configuration that fits within the 
reserved storage space using greedy algorithms. Although 
meta-heuristics and data mining approaches have an attractive 
theoretical success, it is well-known that they still suffer from 
their parameter settings challenging. Indeed, finding the best 
parameter values is not a trivial task for the administrator and 
is very hard to set. 

In this paper, we seek to address the shortcomings of 
existing approximation techniques by proposing an exact 
approach that would allow an effective search strategy and 
suggest better solutions. Specifically, through the application 
of constraint programming (CP). 
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Indeed, an exact resolution for the ISP can be very 
computationally expensive due to the NP-hard nature of the 
problem. Fortunately, the last two decades have seen the rise of 
effective paradigms for the exact resolution of NP-hard 
problems, such as CP [18], [19]. The latter has been proved to 
be a very effective paradigm in solving large, particularly 
combinatorial and computationally hard, problems in different 
fields [20]. Therefore, CP has been successfully used in both 
academic and industry to solve a variety of optimization 
problems such as production planning, scheduling, packing, 
airport traffic-control, hardware validation, and robotics, to 
name but a few [18], [20]. The considerable development of 
CP can be explained by the significant increase in the 
processing power of the computers as well as advanced CP 
search strategies that result in developing effective and scalable 
solvers [21].   

To the best of our knowledge, in the literature, the BJI-SP 
has never been addressed using CP techniques. This will be at 
the core of this work. Our main contributions can be 
summarized as follows: First, we describe a system 
architecture for efficiently solving BJI-SP. Second, we present 
a CP formulation for the problem. Third, we demonstrate the 
relevance of our approach through an implementation under 
Choco [22], an open-source solver used in industry and 
research. We also report preliminary results that demonstrate 
that our approach has good performances and outperforms well 
known index selection techniques. 

II. BACKGROUND 

To facilitate the understanding of our approach, this section 
is intended to briefly sketch key notions including the ISP 
statement, cost models and basic concepts of CP that are used 
in modelling and solving the ISP. 

A. Index Selection in Data Warehouses: Problem Statement 

In a relational context, data warehouses are often modelled 
according to a star schema with rather a large fact table F and a 
set of descriptive dimension tables                 . The 
dimension tables are linked to the fact table through foreign 
key relationships. Data stored in a data warehouse are often 
analysed by means of complex star queries that join the central 
fact table with multiple referenced dimension tables. In 
practice, star queries processing may take hours or even days 
and, thus, BJIs are widely used to improve query processing 
performance [1], [3]–[5]. For a given workload, a naive 
approach consists in exhaustively materializing all possible 
BJIs. Nevertheless, the space limitation of the system would 
hinder the DWA from doing this. Therefore, the problem of 
selecting an appropriate set of indexes can be formalized as an 
optimization problem with constraints as follows: Given a 
representative workload consisting of a set of   queries 
                , and given a storage constraint     , the 
goal is to provide an index configuration (set of indexes)     t 

among all possible configurations so that the cost of processing 
the workload W using      is minimum subject to the limit on 

the total indexes’ size,      i.e.: 

{
 
 

 
 ∑ 
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Where,               is the cost of processing query    

using the configuration      and          is the needed disk 

space to store the index        . 

B. Cost Models 

Cost models are used to estimate both the Index storage and 
the workload processing costs. In this paper, we use the 
mathematical cost models that are initially proposed in [14] 
and are widely used in the most closely related works [4], [7]–
[9], [13], [15]. Below, we describe the cost models using the 
parameters summarized in Table I. 

TABLE I.  COST MODELS PARAMETERS 

Symbol Description 

    
Number of tuples of a table  , the cardinality of set  , 

or the cardinality of the attribute  . 

   Disk page size in bytes. 

      Number of pages needed to store the table  . 

   Page pointer size in bytes. 

     Size of tuples of a table   . 

  B-tree order,                 . 

  Number of bitmaps used for processing a given query. 

   Number of tuples accessed by a given query,              

1) Index size estimation  
The size in bytes of a BJI    built on attribute  , called 

        , depends on the domain cardinality of attribute   and 
the number of tuples in the fact table and is estimated by [14]:  

         
       

 
       (2) 

Where,     is the cardinality of attribute  , and     is the 
number of tuples in the fact table  . 

If   denotes an index configuration and         represents 
the size of the configuration  , we have:  

        ∑  

   

          (3) 

2) Workload cost estimation 

The number of input/output (I/O) operations to perform 
when processing each query of the workload is typically used 
as a measure of the utility of an index. The cost of processing a 
query    in presence of an index    created on attribute  , 
called               , is given by:  
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(4) 

Where,   is the B-tree order,   is the number of bitmaps 
used to evaluate    using   ,    is the page pointer size in 
bytes,              is the number of read tuples for the 
query   , and       is the number of pages needed to store the 
fact table  . 

If the generated index configuration   do not cover a given 
query   , the query cost is augmented by the cost of joins not 
yet performed due to the absence of a BJI precomputing them 
in  . Assuming all joins are achieved using the hash-join 
method, and if    denotes the set of dimension tables 
containing non-indexed attributes involved by query   , the 
overall cost of hash-joins needed for answering query   , 
called                , can be estimated by [14] : 

                         ∑  

    

        (5) 

Bearing the above in mind, the total cost of the workload 
  for the generated index configuration  , called          , 
is computed by:  

C. Basic concepts on constraint programming 

Constraint satisfaction problems (CSPs) are a class of 
problems with many real-world applications. A CSP is 
formally described by a triplet ⟨     ⟩, where:   

               is a set of decision variables, 

                is a set of domains (possible 
values). Each variable    can take on values from its 
domain   . 

                is a set of constraints (restrictions). 
Each constraint     involves a finite number of 
variables and restricts the values that this subset of 
variables can simultaneously take. 

A solution to a CSP is the assignment of values to each of 
the decision variables from their domains, in such a way that 
every constraint in   is satisfied. It is possible to search for one 
solution, all solutions, an optimal, or at least a good solution, 
given some objective function. In the last case, the CSP is said 
to be a Constraint Optimization Problem (COP). More 
formally, a COP is a CSP of the form ⟨       ⟩, where   is 
an objective function for ranking solutions. An optimal 

solution is the one which minimizes / maximizes the objective 
function [21]. 

CP is a paradigm for efficiently solving combinatorial 
problems, particularly CSPs and COPs. While traditionally 
problem resolution describes how a solution should be 
computed, CP employs a more declarative approach. The 
emphasis lies on developing high-level modelling languages 
and general solvers where the user describes the structure of 
the problem without specifying how to solve it [20]. 

Solving a practical problem using CP is made of two stages 
that are named the model stage and the resolution stage. First, 
the problem must be modelled as a CSP or a COP, which 
means it is needed to precise the definition of variables and 
their domains, the specification of the constraints between 
variables and the definition of the objective function on related 
variables (if the problem is a COP). Second, the resolution 
stage combines various algorithms to solve the problem 

according to its modelling. It relies on two main operations: 
constraint propagation and search strategy. Propagation is the 
process of reducing variables domains by using constraints to 
filter incoherent values. When constraint propagation is unable 
to further reduce the domains of variables, search strategies are 
then used to decide how to explore the search space by 
computing decisions. A decision involves a variable, a value 
and a branching strategy and triggers new constraint 
propagation [21], [22].  

It is worth pointing that in such strategies, the solution 
space is usually organized as a search tree and the shape of 
this tree is typically defined by the choice of the next variable 
to branch on, and the corresponding value assignment. This 
choice has a huge influence on the size of the search tree, and 

hence, the search effort required to solve the problem. Thus, 
for efficiency reasons, most recent CP solvers offer the user the 
possibility to determine the most convenient search strategy or 
even to control the search behavior by tuning the search 
process using generic search heuristics known as black-box 
search strategies. The latter, like Impact-Based Search heuristic 
(IBS) [23], domain over weighted degree heuristic 
(DomOverWDeg) [24], and Activity-Based Search heuristic 
(ABS) [25], are generic search heuristics provided by most of 
the solvers that can be readily used with any model and can 
perform well on a broad range of problems [21].  

III. OUR APPROACH: MODELLING AND SOLVING THE BJI-SP 

WITH CONSTRAINT PROGRAMMING 

A. General principle of our approach 

Our proposed approach (illustrated in Figure 1) exploits the 
information extracted from the warehouse’s data (notably,  

 

 

 

          ∑  
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Fig. 1 Architecture of our CP-based Approach for the BJI-SP 
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DWH schema and statistics such as attribute cardinality, 
and attribute selectivity) as well as DWA expertise, formalized 
as constraints, to recommend an index configuration improving 
data access time.  

In the first step, the input workload is syntactically 
analyzed by an automatic parser to identify all attributes that 
might be useful for indexing, indexable attributes. The latter 
are those non-key dimension table attributes present in the 
WHERE clauses of the considered queries. After that, on each 
indexable attribute, a candidate BJI is built, and the cost 

models are used to estimate its size as well as the cost of 
processing each query in its presence. Subsequently, The BJI-
SP is modelled as a COP by means of a set of decision 
variables, a set of constraints and an objective function for 
ranking the solutions. At this stage, many useful user-defined 
constraints can be easily expressed and straightforwardly 
integrated into the problem model by the DWA. Using these 
constraints can be of great help to intelligently reduce the 
problem search space and thus, accelerate the search process or 
adapt to certain constraints imposed by the system (e.g., a 
limited number of indexes per table). This important modelling 
step is detailed in the next subsection. Afterwards, a constraint 
solver is employed to conduct an automated search for 
solutions. lastly, each index from the optimal set found is 
implemented by executing CREATE statements (ORACLE), 
and workload queries are updated by inserting appropriate 
HINT statements.   

B. CP Model for the BJI-SP 

In this section, we describe our CP model for the BJI-SP. 
Symbols and the variables used in the formulation are 
presented in Table II. 

TABLE II.  CP BJI-SP MODEL PARAMETERS 

Symbol Description 

              A set of indexable attributes 

              A set of candidate indexes 

              A set of dimension tables 

              A representative set of decisional queries (Workload) 

              Indexation decision variables. 

                Dimension table loading decision variables. 

              Hash-joining decision variables. 

  Fact table 

    Cardinality of set   

      Number of pages needed to store the table   

     Storage space reserved for the indexes to be selected. 

   index built on attribute    

         Estimated size of index    built on attribute    

    The Cost of responding query    using BJI    

          Equals to 1 if attribute    is involved in query   . 

          Equals to 1 if attribute    belongs to the dimension 

table   . 

Given an input workload   consisting of   queries 
           , we syntactically parse each query    and extract 

a set of indexable attributes. A candidate index is then created 
on each indexable attribute. Let               be the set of   
candidate indexes. We denote     the cost of processing the 

query    using the index   . As explained above, the objective 

is to identify an index configuration      that minimizes the 
total workload cost computed by summing up the cost of 
processing each query. Therefore, for each query    in  , our 

model should make decisions on:   

Storag
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 The indexes to maintain, i.e., the indexes that will profit 
the most the query   ,  

 The dimension tables that must be loaded to answer   , 

when needed, 

 The joins to perform, when needed. 

To express these decisions, the model we propose uses 
three sets of binary decision variables as follows:  

  , the indexation decision variable set, where each 
variable    represents whether the index   , built on 
attribute   , will be maintained in the final index 
configuration (    ) or not (    ). 

  , the loading decision variable set, where each 
variable     indicates whether dimension table    is to 

be loaded and joined with the fact table   when 
answering query    (     ) or not (     ). 

  , the hash-joining decision variable set, where each 
variable    indicates whether a hash-join operation is 

needed when answering query    (     ) or not 

(    ).  

We recall that hash-join operations are needed when a 
query is not totally covered by indexes. 

Furthermore, our model employs two constant Boolean 
matrices   and  :   

 The matrix   indicates whether an attribute    is 
accessed by a query    (     ) or not (     ).  

 The matrix   indicates whether an attribute    belongs 
to a dimension table    (     ) or not (     ).  

Thus, our CP model for the BJI-SP is expressed as follows: 

           

∑ 

   

   

∑ 

   

   

                   ∑ 

   

   

   

         

(7) 

               

∑  
   
                     (8) 

∑  
   
          ∑  

   
             (9) 

∑  
   
                           (10) 

Where:   

 The objective function in (7) aims to minimize the total 
cost of the query workload,  

 Equation (8) expresses a knapsack constraint ensuring 
that the set of selected indexes consumes no more than 
the bound     .  

 Constraint in (9) links the indexation decision variable 
  with the hash-joining decision variable  . It states 
that, for a query   , a join operation is not needed (i.e, 

    ) if and only if each attribute    involved in    

(i.e,      ) is indexed i.e, (    ).  

 Finally, the constraint in (10) states whether a 
dimension table    must be loaded to answer a query 
   (i.e,      ) or not. The table    must be loaded 

if and only if there exists at least one non-indexed 
attribute    (i.e,     ) belonging to    (i.e,      ) 
and    is involved in the query    (i.e,      ).  

IV. EXPERIMENTAL STUDY 

A. Experimental Setup 

We implemented our CP model using the Java library 
Choco 4.0.8

1
 [22] which is a well-known free open-source 

library dedicated to CP. All the computational experiments 
have been run on an Intel(R) Core (TM) i3 CPU 8100@3.60 
GHz machine with 8.0 GB RAM and running Windows 10 Pro 
x64 operating system. 

We compared our approach's performance with that of two 
approaches that are best so far in the context of selecting BJIs 
in relational data warehouses: (i) The Data mining (DM) based 
approach and (ii) The Genetic Algorithms (GA) based 
approach.   

 The DM-based approach proposed in [4] was 
implemented using Java Development Kit. The 
threshold value for this approach was set to 0.05 as 
suggested by the authors. 

 The improved version of the GA-based approach 
proposed in [11] was implemented using the Java 
Genetic Algorithms Package API

2
. We also maintained 

the same parameter setup as suggested by the authors, 
that is, the population size, the crossover probability, 
the mutation rate, and the number of iterations set to 
70, 0.8, 0.01 and 200 respectively.  

In all experiments, the quality of the solutions found is 
measured in terms of percentage gain rates on the workload 
cost when using the resulted index configuration relative to its 
cost without indexes. It is given by: 

where,            represents the cost of the workload   

using the resulting Index Configuration (        and 
          represents the workload cost in absence of useful 
indexes in       (computed using the Hash-join method). For 
GA, the workload cost was computed and averaged over five 
independent runs because of its probabilistic behavior. 

                                                           
1 http://www.choco-solver.org/ 

2 http://jgap.sourceforge.net 

                                   (11) 

http://www.choco-solver.org/
http://jgap.sourceforge.net/


INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER 
SCIENCE AND ENGINEERING                                                              
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022 

 

WWW.NEW.IJASCSE.ORG             DOS: NOV 21, 2022                                                                            |  25 

 

B. Data sets 

The APB-1 release II Benchmark of the OLAP Council 
[26] was used to generate the data warehouse and ORACLE 
12c DBMS environment was used to implement the data 
warehouse and obtain data statistics. The APB-1 benchmark 
simulates a realistic On-Line Analytical Processing (OLAP) 
business situation. The star schema of this benchmark consists 
of one fact table Actvars (24,786,000 tuples) and four 
dimension-tables: ProLevel (9,000 tuples), TimeLevel (24 
tuples), CustLevel (900 tuples), and ChanLevel (9 tuples). As a 
workload, we have considered the same workload as in [7] 
consisting of 60 star join queries using several selection 
predicates defined on one or more attributes. The workload is 
composed of single block queries (i.e., not nested queries) that 
belong to several categories: Simple SELECT queries, queries 
of type COUNT(*) with and without aggregations and queries 
using aggregation functions such as SUM, MIN, MAX and 
AVG. 

The experiments were conducted according to two 
scenarios: 

 Smaller Size Problem (SSP): in this scenario, we have 
syntactically analyzed the workload and extracted a set of 
12 indexable attributes (i.e., non-key attributes present in 
the WHERE clauses of each query), namely: {all, line, 
group, retailer, year, quarter, month, family, gender, 
division, class, city}. 

 Larger Size Problem (LSP): in this scenario, since the 
benchmark doesn’t offer a significantly large number of 
indexable attributes, similarly to [11], the indexable 
attributes set was augmented to 20 by adding 8 new 
attributes: {day, type, supplier, category, status, 
educational, marital, state}. Furthermore, a significant 
workload consisting of 260 OLAP queries was considered 
in this case: the former SSP 60 queries plus 200 new 
OLAP queries generated using APB-1 benchmark queries 
templates. 

C. Tests and results 

The experiments were carried out in two steps: (i) An 
empirical study to measure the impact of search strategies on 
the performances of our approach, (ii) An evaluation of the 
performance of our approach against DM and GA approaches 
for both SSP and LSP instances of the problem. In the 
following, we detail the tests performed and the obtained 
results. 

1) Impact of search strategies 
The search strategy is an important factor that can 

drastically affect the solving process. It determines how the 
search tree is built by choosing, at each node of the search tree, 
a non-assigned variable and a value belonging to its domain. 
Recent CP solvers offer a number of generic, problem-
independent search strategies for users to choose from. 
Choosing an effective one is a high problem-dependent task. 
The objective of this first experiment is to drive an empirical 
evaluation of the impact of search strategies on the 

effectiveness of our approach. This allows us to choose the best 
strategy to adopt for the rest of the experiments. To achieve 
this, we first assess how well our method performs in both SSP 
and LSP scenarios when using three good representatives of 
the state of the art for black-box generic search heuristics, 
namely: DomOverWDeg [24], IBS [23] and ABS [25]. Then, to 
further improve search heuristics performances, we associate 
each search heuristic with search plugins (repairing 
mechanisms) LC [27] and COS [28] respectively (yielding a 
total of 18 different cases). For each of these settings, we 
measure the number of visited nodes (shown as a measure of 
the size of the search tree), backtracks performed and time in 
milliseconds to find and prove the optimal solution (if it 
exists).  

Table III shows the obtained results as the maximum 
storage size reserved for indexes (     ) was increased 
systematically from 1000 MB to 2000 MB and then to 3000 
MB. Note that DomOverWDeg is the default search strategy in 
Choco Solver and thus, the results obtained by this strategy are 
what most users would get. 

TABLE III.  THE IMPACT OF SEARCH STRATEGIES ON THE EFFICIENCY OF 

OUR APPROACH 

Search  

Strategy 

Smax 

(MB) 

SSP scenario LSP scenario 

 Time   Nodes   Back-

tracks  

 Time   Nodes   Back-

tracks 

ABS 

 1000   106   372   491   171   1 225   1 597 

 2000   120   309   403   285   1 384   1 737 

 3000   127   476   619   296   1 662   2 036 

IBS 

 1000   060   15   29   095   94   153 

 2000   074   28   39   116   202   369 

 3000   081   47   65   131   171   305 

DomOver-

WDeg 

 1000   069   41   57   099   110   191 

 2000   084   71   87   120   194   339 

 3000   095   59   61   178   276   381 

ABS-LC 

 1000   108   373   493   163   1 223   1593 

 2000   120   309   403   234   1 562   2 045 

 3000   124   476   619   270   1 673   2 056 

IBS-LC 

 1000   060   14   27   092   89   163 

 2000   075   29   37   111   173   319 

 3000   083   47   65   120   144   259 

DomOver-

WDeg-LC 

 1000   066   33   49   085   107   187 

 2000   080   68   81   119   174   305 

 3000   085   59   61   167   254   343 

ABS-COS 

 1000   108   384   515   163   1 204   1 555 

 2000   125   307   399   285   1 935   2 742 

 3000   124   475   617   299   1 662   2 041 

IBS-COS 

 1000   060   12   23   090   85   173 

 2000   070   24   31   106   160   299 

 3000   078   43   61   112   127   225 

DomOver-

WDeg-COS 

 1000   065   40   61   094   110   187 

 2000   089   68   81   102   126   215 

 3000   083   59   63   173   246   327 
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The experiments results highlight that all search strategies 
were able to solve both SSP and LSP scenarios to optimality in 
less than 300 milliseconds. The ABS heuristic performance was 
the worst in all terms (resolution time, number of nodes of tree 
search and number of backtracks). The default search strategy 
of Choco solver (DomOverWDeg) was much more efficient. 
Nevertheless, IBS heuristic was by far the best since the search 
trees were always smaller. Our experiments with the LC and 
COS search plugins revealed that when used on top of the three 
search criteria, the LC plugin provided better results in 55,55% 
of instances and equal performances in 22,22%. The COS 
heuristic enhanced performances much further, with a rate of 
72,22% of improvements and 16,66% of equal performances. 
Based on these findings, for the rest of our experimentation, we 
maintained the IBS heuristic associated with COS repairing 
mechanism as the search strategy for our model. 

2) Performance study and comparative analysis 

In this section, we provide a performance evaluation of our 
approach (referred to as CPBJIS) against DM and GA based 
approaches for both SSP and LSP scenarios. The quality of 
each approach is measured in terms of its gain rate (%Gain) 
and its running time (in milliseconds). For the stochastic 
algorithm GA, the best gain rate over five independent runs 
(%BestGain), the average gain rate (%AvgGain), and the 
average execution time (AvgTime) are reported. Performance 
evaluations are performed under storage size constraint, where 
the maximal storage space      was increased from 500 MB 
to 6500 MB in 500 MB increments. The results of the 
experiments are presented in Table IV and Table V for the SSP 
and LSP sets respectively. In both tables, the best results are 
presented in a bold font and the last row provides, for each 
approach, an average total execution time and gain rate. 

TABLE IV.   CP-BJIS PERFORMANCE VS DM AND GA FOR SSP SCENARIO 

Smax 

(MB) 

GA DM CP-BJIS 

%Best-

Gain 

%Avg-

Gain 
Avg-Time %Gain Time %Gain Time 

500 20,88 19,34 1 235 18,32 120 20,88 55 

1000 34,97 32,82 2940 34,97 144 35,05 52 

1500 45,02 44,47 3110 44,48 142 45,79 60 

2000 52,68 51,01 3175 45,79 176 53,42 69 

2500 60,69 60,24 3340 58,48 176 60,69 72 

3000 61,81 60,97 3715 61,81 198 62,95 75 

3500 64,06 63,83 3550 63,60 198 64,06 70 

4000 63,73 63,38 3210 63,60 183 64,86 78 

4500 64,06 63,93 193320 65,49 193 65,98 65 

5000 69,30 67,14 3205 65,49 193 70,44 68 

5500 70,44 70,44 3680 65,49 192 71,56 78 

6000 72,36 72,36 3560 65,49 193 72,36 72 

6500 73,48 73,48 3320 65,49 193 73,48 74 

AVG 57,96 57,19 3181 55,27 177 58,58 68 

Results of the SSP scenario, presented in Table IV, showed 
that whatever the value of the storage space     , CP-BJIS 

outperforms GA and DM approaches for both measures 
(execution time and gain rate). The CP-BJIS approach 
computes solutions in average 2.6 times faster than DM and 
46.77 times faster than GA. In terms of gain rates, as the space 
allocated for indexes grows, all algorithms converge towards 
selecting indexes with better performances, except for the DM 
algorithm that stops converging when      exceeds 4500 MB. 
Moreover, this algorithm was less efficient and failed to reach 
any best solution. This might be due to the additional minimal 
frequency constraint of this approach. Indeed, even when the 
storage space is not too tight, this constraint may result in 
missing some non-frequent, but useful, candidate indexes that 
could favour the convergence towards an optimal solution. On 
the other hand, GA performs better than the DM method (even 
though the latter was almost 18 times faster), it generates the 
best solutions 5 times out of 13 (in its best performances 
%BestGain) and its average performance rates (%AvgGain) 
were close to the best ones (obtained via the CP-BJIS). 
However, in all the cases, CP-BJIS remains the best one with 
100% of best solutions found in the shortest computing time. 

TABLE V.  CP-BJIS PERFORMANCE VS DM AND GA FOR LSP SCENARIO 

 Smax 

(MB) 

 GA   DM   CP-BJIS 

%Best-

Gain 

%Avg-

Gain 
Avg-Time %Gain Time %Gain Time 

500 22,58 22,51 8733 22,58 280 22,58 74 

1000 40,00 38,09 9538 40,00 301 40,80 96 

1500 47,36 46,21 10274 45,97 320 48,36 103 

2000 53,40 51,14 9713 51,35 385 53,55 101 

2500 57,49 55,82 10115 53,59 371 57,49 107 

3000 59,93 59,49 10589 59,48 412 60,60 111 

3500 63,07 62,08 10972 62,25 407 63,07 137 

4000 65,12 64,16 11365 64,48 435 65,43 149 

4500 67,42 66,67 11021 66,27 359 67,66 155 

5000 69,93 69,46 12274 67,22 322 70,28 150 

5500 72,13 71,84 11713 67,22 330 72,88 128 

6000 74,63 74,17 10115 71,44 321 74,63 130 

6500 75,58 75,46 10589 71,44 319 75,79 124 

AVG 59,13 58,25 10539,31 57,18 350,92 59,47 120,38 

Results of the LSP scenario, presented in Table V, showed 
slight improvements (less than 2%) in the average gain rates of 
all approaches compared to those obtained in the SSP scenario. 
By contrast, the average run time needed to obtain these 
performances is significantly higher (3.31 times higher for GA, 
1.98 for DM and 1.77 for CP-BJIS). This increase in run time 
is due to the increase in the number of candidate indexes which 
went from 12 to 20. Comparing the average computation time 
of the three methods for this larger workload, CP-BJIS was 
2.91 times and 87.82 times faster than the DM and GA 
approaches respectively. These results showed that our 
approach is likely to scale better than the two other approaches 
when increasing the number of indexable attributes and the size 
of the workload. In terms of solutions’ quality, CP-BJIS was 
able to generate the best solutions in all the cases (13 out of 
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13), GA generated 4 best solutions (in its best performances 
%BestGain) and only one best solution was found by the DM 
algorithm. In summary, as also mentioned for the SSP 
scenario, the CP-BJIS approach has again considerably 
outperformed both GA and DM approaches in all aspects; 
execution time, gain rates and the number of best solutions 
found. 

V. CONCLUSIONS AND PERSPECTIVES 

The ISP has always been a focal issue in database design 
considering its potential huge search space. The difficulty of 
solving this problem illustrates the limitations of existing 
approaches which rely, often, on heuristics and meta-heuristics 
trying to provide the best trade-off between the quality of 
solutions and the execution time. Despite being practical, 
however, these approaches do not guarantee to find the optimal 
solution and to determine their best set-up parameters is highly 
challenging. 

In this paper, we have proposed a new exact approach to 
address the ISP in the DW environment. More precisely, we 
have provided an innovative alternative to state-of-the-art 
approaches by using the CP paradigm to model and solve the 
problem. Thus, we have considered the ISP as a COP, and a 
corresponding CP model was specified and implemented using 
Choco, a well-known open-source CP solver. The resolution 
process is then automatically supported by the solver.   

The effectiveness and efficiency of our approach have been 
validated on APB-I, a fairly large benchmark data warehouse, 
over several experiments. At first, we conducted an empirical 
study to choose the best search strategy, for our model, from 
the state-of-the-art generic search heuristics. Obtained results 
show that our model performs better with the IBS search 
heuristic associated with COS repairing mechanism. 
Afterwards, we performed a comparative study against two 
well-known approaches, the GA and the DM. Considering 
smaller and larger instances of the ISP, the experimental results 
confirm the superior performance of our approach for both 
cases. Our approach achieves more accurate solutions with a 
CPU time that is much shorter than its two other competitors. 

Overall, the outstanding performance of our proposed 
approach indicates that CP is a promising technology for the 
ISP. It can prove optimality for much larger test instances, and 
thus, it can be used not only as a physical design framework 
expandable on user constraints, but also as a benchmark to 
measure other approaches' solutions quality. 

As future work, we plan to extend our model to the 
selection of multi-attribute indexes. Another interesting 
direction consists in accelerating the search process by 
developing a custom search strategy dedicated to the ISP or by 
integrating approximate search strategies such as meta-
heuristics with Large Neighborhood Search. 
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