
INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 20

Effectively indexing Data Warehouses: A Constraint

Programming Perspective

Youcef Ariouat
1
*, Benamor Ziani

1
, and Youcef Ouinten

1

1
LIM Laboratory, Amar Telidji University of Laghouat, Bp 37G, Ghardaia Road, Laghouat 03000, Algeria

*Corresponding author Email: y.ariouat@cu-barika.dz

Abstract— Data warehouses have become, nowadays, at the

core of decisional systems. The Index Selection Problem (ISP) is a

challenging problem in data warehouses physical design.

Regarding the NP-hard nature of this problem, existing solutions

rely heavily on heuristics which constitutes a major drawback. In

this paper, we propose a novel exact approach to the ISP based

on Constraint Programming (CP). We formulate the problem as

a Constraint Optimization Problem in a declarative way, then its

resolution is automatically supported by a generic CP solver. Our

proposed approach has also the advantage of being declarative,

flexible, and expandable as it allows incorporating various kinds

of user preferences, expressed as constraints, as well as choosing

or defining new search strategies. Experimental results confirm

our expectations and show that our approach scales well enough

to solve much larger realistic instances in a faster and more

effective way compared to well-known state-of-the-art

approximation approaches.

Keywords— data warehouses; bitmap join index; constraint

programming; index selection problem; constraint optimization

problem; decisional systems.

I. INTRODUCTION

This Data warehouses (DWs) are at the core of today’s
decision support systems. Their main role is to transform the
data they contain into strategic indicators for smart decision
making. Such indicators are expressed by means of complex
analytical queries that often scan huge volumes of historically
collected data. Indexing remains one of the most effective
techniques used by the data warehouse administrator (DWA)
for data access improvement since it allows finding the desired
information without the need to scan the whole data [1]–[4].
Particularly, bitmap join indexes (BJIs) [5] have proven to be
an efficient solution suited to avoid costly join operations by
performing fast binary operations on the index level rather than
scanning the data [3]. Furthermore, the binary nature of BJIs
leads to their size being significantly smaller and makes them
highly amenable to compression and encoding.

Although BJIs can significantly improve the query
processing performance, selecting just those that are interesting
is yet a big challenge. In the literature, this is known as the ISP
which is proven to be NP-hard [6]. The complexity stems from
the potential huge search space that the DWA faces. Indeed,

with k attributes, that appear in a given workload,

different indexes can be considered, leading to
possible index configurations [4]. Consequently, the increase in
the number of attributes triggers a rapid growth of possible
indexes, leading to a large search space.

In this particular context, works devoted to solve the BJI
selection problem (BJI-SP), may be clustered into three
categories: heuristic-based algorithms [7], metaheuristics-based
algorithms [1], [8]–[11] and data mining-based techniques [4],
[12]–[15]. Heuristic-based approaches [7] try, in a first phase,
to prune its combinatorial search space into a small subset of
possible candidate indexes. Then, in a second phase, greedy
search algorithms (bottom-up or top-down search) are used to
recommend a final set of indexes regarding a storage budget
specified by the DWA. Despite their simplicity, these
approaches rely heavily on heuristics and does not guarantee
the optimal solution. Indeed, in case of severely limited disk
space, such approaches may result in not considering some
very good indexes [16], [17]. Classical metaheuristic
algorithms have also been used to solve the BJI-SP in DW
context. Among these methods, we can mention the Ant
Colony Optimization [8], Genetic Algorithms [10], Artificial
Immune Systems [9], Binary Particle Swarm Optimization [11]
and Multi-objective Evolutionary Algorithms [1]. Other
directions to tackle the BJI-SP have been proposed and are
based on data mining techniques [4], [12]–[15]. The intuitive
idea is that the importance of an index is strongly correlated
with its appearance frequency in the workload. Thus, these
approaches use the concept of closed frequent itemset [14] or
the maximal frequent itemset technique [4] to efficiently prune
the initial search space. A second phase is necessary for
selecting the best index configuration that fits within the
reserved storage space using greedy algorithms. Although
meta-heuristics and data mining approaches have an attractive
theoretical success, it is well-known that they still suffer from
their parameter settings challenging. Indeed, finding the best
parameter values is not a trivial task for the administrator and
is very hard to set.

In this paper, we seek to address the shortcomings of
existing approximation techniques by proposing an exact
approach that would allow an effective search strategy and
suggest better solutions. Specifically, through the application
of constraint programming (CP).

mailto:y.ariouat@cu-barika.dz

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 21

Indeed, an exact resolution for the ISP can be very
computationally expensive due to the NP-hard nature of the
problem. Fortunately, the last two decades have seen the rise of
effective paradigms for the exact resolution of NP-hard
problems, such as CP [18], [19]. The latter has been proved to
be a very effective paradigm in solving large, particularly
combinatorial and computationally hard, problems in different
fields [20]. Therefore, CP has been successfully used in both
academic and industry to solve a variety of optimization
problems such as production planning, scheduling, packing,
airport traffic-control, hardware validation, and robotics, to
name but a few [18], [20]. The considerable development of
CP can be explained by the significant increase in the
processing power of the computers as well as advanced CP
search strategies that result in developing effective and scalable
solvers [21].

To the best of our knowledge, in the literature, the BJI-SP
has never been addressed using CP techniques. This will be at
the core of this work. Our main contributions can be
summarized as follows: First, we describe a system
architecture for efficiently solving BJI-SP. Second, we present
a CP formulation for the problem. Third, we demonstrate the
relevance of our approach through an implementation under
Choco [22], an open-source solver used in industry and
research. We also report preliminary results that demonstrate
that our approach has good performances and outperforms well
known index selection techniques.

II. BACKGROUND

To facilitate the understanding of our approach, this section
is intended to briefly sketch key notions including the ISP
statement, cost models and basic concepts of CP that are used
in modelling and solving the ISP.

A. Index Selection in Data Warehouses: Problem Statement

In a relational context, data warehouses are often modelled
according to a star schema with rather a large fact table F and a
set of descriptive dimension tables . The
dimension tables are linked to the fact table through foreign
key relationships. Data stored in a data warehouse are often
analysed by means of complex star queries that join the central
fact table with multiple referenced dimension tables. In
practice, star queries processing may take hours or even days
and, thus, BJIs are widely used to improve query processing
performance [1], [3]–[5]. For a given workload, a naive
approach consists in exhaustively materializing all possible
BJIs. Nevertheless, the space limitation of the system would
hinder the DWA from doing this. Therefore, the problem of
selecting an appropriate set of indexes can be formalized as an
optimization problem with constraints as follows: Given a
representative workload consisting of a set of queries
 , and given a storage constraint , the
goal is to provide an index configuration (set of indexes) t

among all possible configurations so that the cost of processing
the workload W using is minimum subject to the limit on

the total indexes’ size, i.e.:

{

 ∑

 ()

∑

 (1)

Where, is the cost of processing query

using the configuration and is the needed disk

space to store the index .

B. Cost Models

Cost models are used to estimate both the Index storage and
the workload processing costs. In this paper, we use the
mathematical cost models that are initially proposed in [14]
and are widely used in the most closely related works [4], [7]–
[9], [13], [15]. Below, we describe the cost models using the
parameters summarized in Table I.

TABLE I. COST MODELS PARAMETERS

Symbol Description

Number of tuples of a table , the cardinality of set ,

or the cardinality of the attribute .

 Disk page size in bytes.

 Number of pages needed to store the table .

 Page pointer size in bytes.

 Size of tuples of a table .

 B-tree order, .

 Number of bitmaps used for processing a given query.

 Number of tuples accessed by a given query,

1) Index size estimation
The size in bytes of a BJI built on attribute , called

 , depends on the domain cardinality of attribute and
the number of tuples in the fact table and is estimated by [14]:

 (2)

Where, is the cardinality of attribute , and is the
number of tuples in the fact table .

If denotes an index configuration and represents
the size of the configuration , we have:

 ∑

 (3)

2) Workload cost estimation

The number of input/output (I/O) operations to perform
when processing each query of the workload is typically used
as a measure of the utility of an index. The cost of processing a
query in presence of an index created on attribute ,
called , is given by:

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 22

(4)

Where, is the B-tree order, is the number of bitmaps
used to evaluate using , is the page pointer size in
bytes, is the number of read tuples for the
query , and is the number of pages needed to store the
fact table .

If the generated index configuration do not cover a given
query , the query cost is augmented by the cost of joins not
yet performed due to the absence of a BJI precomputing them
in . Assuming all joins are achieved using the hash-join
method, and if denotes the set of dimension tables
containing non-indexed attributes involved by query , the
overall cost of hash-joins needed for answering query ,
called , can be estimated by [14] :

 ∑

 (5)

Bearing the above in mind, the total cost of the workload
 for the generated index configuration , called ,
is computed by:

C. Basic concepts on constraint programming

Constraint satisfaction problems (CSPs) are a class of
problems with many real-world applications. A CSP is
formally described by a triplet ⟨ ⟩, where:

 is a set of decision variables,

 is a set of domains (possible
values). Each variable can take on values from its
domain .

 is a set of constraints (restrictions).
Each constraint involves a finite number of
variables and restricts the values that this subset of
variables can simultaneously take.

A solution to a CSP is the assignment of values to each of
the decision variables from their domains, in such a way that
every constraint in is satisfied. It is possible to search for one
solution, all solutions, an optimal, or at least a good solution,
given some objective function. In the last case, the CSP is said
to be a Constraint Optimization Problem (COP). More
formally, a COP is a CSP of the form ⟨ ⟩, where is
an objective function for ranking solutions. An optimal

solution is the one which minimizes / maximizes the objective
function [21].

CP is a paradigm for efficiently solving combinatorial
problems, particularly CSPs and COPs. While traditionally
problem resolution describes how a solution should be
computed, CP employs a more declarative approach. The
emphasis lies on developing high-level modelling languages
and general solvers where the user describes the structure of
the problem without specifying how to solve it [20].

Solving a practical problem using CP is made of two stages
that are named the model stage and the resolution stage. First,
the problem must be modelled as a CSP or a COP, which
means it is needed to precise the definition of variables and
their domains, the specification of the constraints between
variables and the definition of the objective function on related
variables (if the problem is a COP). Second, the resolution
stage combines various algorithms to solve the problem

according to its modelling. It relies on two main operations:
constraint propagation and search strategy. Propagation is the
process of reducing variables domains by using constraints to
filter incoherent values. When constraint propagation is unable
to further reduce the domains of variables, search strategies are
then used to decide how to explore the search space by
computing decisions. A decision involves a variable, a value
and a branching strategy and triggers new constraint
propagation [21], [22].

It is worth pointing that in such strategies, the solution
space is usually organized as a search tree and the shape of
this tree is typically defined by the choice of the next variable
to branch on, and the corresponding value assignment. This
choice has a huge influence on the size of the search tree, and

hence, the search effort required to solve the problem. Thus,
for efficiency reasons, most recent CP solvers offer the user the
possibility to determine the most convenient search strategy or
even to control the search behavior by tuning the search
process using generic search heuristics known as black-box
search strategies. The latter, like Impact-Based Search heuristic
(IBS) [23], domain over weighted degree heuristic
(DomOverWDeg) [24], and Activity-Based Search heuristic
(ABS) [25], are generic search heuristics provided by most of
the solvers that can be readily used with any model and can
perform well on a broad range of problems [21].

III. OUR APPROACH: MODELLING AND SOLVING THE BJI-SP

WITH CONSTRAINT PROGRAMMING

A. General principle of our approach

Our proposed approach (illustrated in Figure 1) exploits the
information extracted from the warehouse’s data (notably,

 ∑

∑

 ∑

(6)

Fig. 1 Architecture of our CP-based Approach for the BJI-SP

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 23

DWH schema and statistics such as attribute cardinality,
and attribute selectivity) as well as DWA expertise, formalized
as constraints, to recommend an index configuration improving
data access time.

In the first step, the input workload is syntactically
analyzed by an automatic parser to identify all attributes that
might be useful for indexing, indexable attributes. The latter
are those non-key dimension table attributes present in the
WHERE clauses of the considered queries. After that, on each
indexable attribute, a candidate BJI is built, and the cost

models are used to estimate its size as well as the cost of
processing each query in its presence. Subsequently, The BJI-
SP is modelled as a COP by means of a set of decision
variables, a set of constraints and an objective function for
ranking the solutions. At this stage, many useful user-defined
constraints can be easily expressed and straightforwardly
integrated into the problem model by the DWA. Using these
constraints can be of great help to intelligently reduce the
problem search space and thus, accelerate the search process or
adapt to certain constraints imposed by the system (e.g., a
limited number of indexes per table). This important modelling
step is detailed in the next subsection. Afterwards, a constraint
solver is employed to conduct an automated search for
solutions. lastly, each index from the optimal set found is
implemented by executing CREATE statements (ORACLE),
and workload queries are updated by inserting appropriate
HINT statements.

B. CP Model for the BJI-SP

In this section, we describe our CP model for the BJI-SP.
Symbols and the variables used in the formulation are
presented in Table II.

TABLE II. CP BJI-SP MODEL PARAMETERS

Symbol Description

 A set of indexable attributes

 A set of candidate indexes

 A set of dimension tables

 A representative set of decisional queries (Workload)

 Indexation decision variables.

 Dimension table loading decision variables.

 Hash-joining decision variables.

 Fact table

 Cardinality of set

 Number of pages needed to store the table

 Storage space reserved for the indexes to be selected.

 index built on attribute

 Estimated size of index built on attribute

 The Cost of responding query using BJI

 Equals to 1 if attribute is involved in query .

 Equals to 1 if attribute belongs to the dimension

table .

Given an input workload consisting of queries
 , we syntactically parse each query and extract

a set of indexable attributes. A candidate index is then created
on each indexable attribute. Let be the set of
candidate indexes. We denote the cost of processing the

query using the index . As explained above, the objective

is to identify an index configuration that minimizes the
total workload cost computed by summing up the cost of
processing each query. Therefore, for each query in , our

model should make decisions on:

Storag

e
constr

aint

Cost

Mod

el

System
limitations

Knowledge

DW

Administrator

additional
constrains

Data

warehouse

Metadata,

statistics, schemas

Workload

 Analyzing Workload
 Extracting indexable

attributes

 Candidate indexes' size
and cost estimation

 Modeling BJI-SP as a
COP

 Creating maintained
indexes

 Creating a candidate
index on each attribute

 Solving (Selecting
indexes to maintain)

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 24

 The indexes to maintain, i.e., the indexes that will profit
the most the query ,

 The dimension tables that must be loaded to answer ,

when needed,

 The joins to perform, when needed.

To express these decisions, the model we propose uses
three sets of binary decision variables as follows:

 , the indexation decision variable set, where each
variable represents whether the index , built on
attribute , will be maintained in the final index
configuration () or not ().

 , the loading decision variable set, where each
variable indicates whether dimension table is to

be loaded and joined with the fact table when
answering query () or not ().

 , the hash-joining decision variable set, where each
variable indicates whether a hash-join operation is

needed when answering query () or not

().

We recall that hash-join operations are needed when a
query is not totally covered by indexes.

Furthermore, our model employs two constant Boolean
matrices and :

 The matrix indicates whether an attribute is
accessed by a query () or not ().

 The matrix indicates whether an attribute belongs
to a dimension table () or not ().

Thus, our CP model for the BJI-SP is expressed as follows:

∑

∑

 ∑

(7)

∑

 (8)

∑

 ∑

 (9)

∑

 (10)

Where:

 The objective function in (7) aims to minimize the total
cost of the query workload,

 Equation (8) expresses a knapsack constraint ensuring
that the set of selected indexes consumes no more than
the bound .

 Constraint in (9) links the indexation decision variable
 with the hash-joining decision variable . It states
that, for a query , a join operation is not needed (i.e,

) if and only if each attribute involved in

(i.e,) is indexed i.e, ().

 Finally, the constraint in (10) states whether a
dimension table must be loaded to answer a query
 (i.e,) or not. The table must be loaded

if and only if there exists at least one non-indexed
attribute (i.e,) belonging to (i.e,)
and is involved in the query (i.e,).

IV. EXPERIMENTAL STUDY

A. Experimental Setup

We implemented our CP model using the Java library
Choco 4.0.8

1
 [22] which is a well-known free open-source

library dedicated to CP. All the computational experiments
have been run on an Intel(R) Core (TM) i3 CPU 8100@3.60
GHz machine with 8.0 GB RAM and running Windows 10 Pro
x64 operating system.

We compared our approach's performance with that of two
approaches that are best so far in the context of selecting BJIs
in relational data warehouses: (i) The Data mining (DM) based
approach and (ii) The Genetic Algorithms (GA) based
approach.

 The DM-based approach proposed in [4] was
implemented using Java Development Kit. The
threshold value for this approach was set to 0.05 as
suggested by the authors.

 The improved version of the GA-based approach
proposed in [11] was implemented using the Java
Genetic Algorithms Package API

2
. We also maintained

the same parameter setup as suggested by the authors,
that is, the population size, the crossover probability,
the mutation rate, and the number of iterations set to
70, 0.8, 0.01 and 200 respectively.

In all experiments, the quality of the solutions found is
measured in terms of percentage gain rates on the workload
cost when using the resulted index configuration relative to its
cost without indexes. It is given by:

where, represents the cost of the workload

using the resulting Index Configuration (and
 represents the workload cost in absence of useful
indexes in (computed using the Hash-join method). For
GA, the workload cost was computed and averaged over five
independent runs because of its probabilistic behavior.

1 http://www.choco-solver.org/

2 http://jgap.sourceforge.net

 (11)

http://www.choco-solver.org/
http://jgap.sourceforge.net/

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 25

B. Data sets

The APB-1 release II Benchmark of the OLAP Council
[26] was used to generate the data warehouse and ORACLE
12c DBMS environment was used to implement the data
warehouse and obtain data statistics. The APB-1 benchmark
simulates a realistic On-Line Analytical Processing (OLAP)
business situation. The star schema of this benchmark consists
of one fact table Actvars (24,786,000 tuples) and four
dimension-tables: ProLevel (9,000 tuples), TimeLevel (24
tuples), CustLevel (900 tuples), and ChanLevel (9 tuples). As a
workload, we have considered the same workload as in [7]
consisting of 60 star join queries using several selection
predicates defined on one or more attributes. The workload is
composed of single block queries (i.e., not nested queries) that
belong to several categories: Simple SELECT queries, queries
of type COUNT(*) with and without aggregations and queries
using aggregation functions such as SUM, MIN, MAX and
AVG.

The experiments were conducted according to two
scenarios:

 Smaller Size Problem (SSP): in this scenario, we have
syntactically analyzed the workload and extracted a set of
12 indexable attributes (i.e., non-key attributes present in
the WHERE clauses of each query), namely: {all, line,
group, retailer, year, quarter, month, family, gender,
division, class, city}.

 Larger Size Problem (LSP): in this scenario, since the
benchmark doesn’t offer a significantly large number of
indexable attributes, similarly to [11], the indexable
attributes set was augmented to 20 by adding 8 new
attributes: {day, type, supplier, category, status,
educational, marital, state}. Furthermore, a significant
workload consisting of 260 OLAP queries was considered
in this case: the former SSP 60 queries plus 200 new
OLAP queries generated using APB-1 benchmark queries
templates.

C. Tests and results

The experiments were carried out in two steps: (i) An
empirical study to measure the impact of search strategies on
the performances of our approach, (ii) An evaluation of the
performance of our approach against DM and GA approaches
for both SSP and LSP instances of the problem. In the
following, we detail the tests performed and the obtained
results.

1) Impact of search strategies
The search strategy is an important factor that can

drastically affect the solving process. It determines how the
search tree is built by choosing, at each node of the search tree,
a non-assigned variable and a value belonging to its domain.
Recent CP solvers offer a number of generic, problem-
independent search strategies for users to choose from.
Choosing an effective one is a high problem-dependent task.
The objective of this first experiment is to drive an empirical
evaluation of the impact of search strategies on the

effectiveness of our approach. This allows us to choose the best
strategy to adopt for the rest of the experiments. To achieve
this, we first assess how well our method performs in both SSP
and LSP scenarios when using three good representatives of
the state of the art for black-box generic search heuristics,
namely: DomOverWDeg [24], IBS [23] and ABS [25]. Then, to
further improve search heuristics performances, we associate
each search heuristic with search plugins (repairing
mechanisms) LC [27] and COS [28] respectively (yielding a
total of 18 different cases). For each of these settings, we
measure the number of visited nodes (shown as a measure of
the size of the search tree), backtracks performed and time in
milliseconds to find and prove the optimal solution (if it
exists).

Table III shows the obtained results as the maximum
storage size reserved for indexes () was increased
systematically from 1000 MB to 2000 MB and then to 3000
MB. Note that DomOverWDeg is the default search strategy in
Choco Solver and thus, the results obtained by this strategy are
what most users would get.

TABLE III. THE IMPACT OF SEARCH STRATEGIES ON THE EFFICIENCY OF

OUR APPROACH

Search

Strategy

Smax

(MB)

SSP scenario LSP scenario

 Time Nodes Back-

tracks

 Time Nodes Back-

tracks

ABS

 1000 106 372 491 171 1 225 1 597

 2000 120 309 403 285 1 384 1 737

 3000 127 476 619 296 1 662 2 036

IBS

 1000 060 15 29 095 94 153

 2000 074 28 39 116 202 369

 3000 081 47 65 131 171 305

DomOver-

WDeg

 1000 069 41 57 099 110 191

 2000 084 71 87 120 194 339

 3000 095 59 61 178 276 381

ABS-LC

 1000 108 373 493 163 1 223 1593

 2000 120 309 403 234 1 562 2 045

 3000 124 476 619 270 1 673 2 056

IBS-LC

 1000 060 14 27 092 89 163

 2000 075 29 37 111 173 319

 3000 083 47 65 120 144 259

DomOver-

WDeg-LC

 1000 066 33 49 085 107 187

 2000 080 68 81 119 174 305

 3000 085 59 61 167 254 343

ABS-COS

 1000 108 384 515 163 1 204 1 555

 2000 125 307 399 285 1 935 2 742

 3000 124 475 617 299 1 662 2 041

IBS-COS

 1000 060 12 23 090 85 173

 2000 070 24 31 106 160 299

 3000 078 43 61 112 127 225

DomOver-

WDeg-COS

 1000 065 40 61 094 110 187

 2000 089 68 81 102 126 215

 3000 083 59 63 173 246 327

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 26

The experiments results highlight that all search strategies
were able to solve both SSP and LSP scenarios to optimality in
less than 300 milliseconds. The ABS heuristic performance was
the worst in all terms (resolution time, number of nodes of tree
search and number of backtracks). The default search strategy
of Choco solver (DomOverWDeg) was much more efficient.
Nevertheless, IBS heuristic was by far the best since the search
trees were always smaller. Our experiments with the LC and
COS search plugins revealed that when used on top of the three
search criteria, the LC plugin provided better results in 55,55%
of instances and equal performances in 22,22%. The COS
heuristic enhanced performances much further, with a rate of
72,22% of improvements and 16,66% of equal performances.
Based on these findings, for the rest of our experimentation, we
maintained the IBS heuristic associated with COS repairing
mechanism as the search strategy for our model.

2) Performance study and comparative analysis

In this section, we provide a performance evaluation of our
approach (referred to as CPBJIS) against DM and GA based
approaches for both SSP and LSP scenarios. The quality of
each approach is measured in terms of its gain rate (%Gain)
and its running time (in milliseconds). For the stochastic
algorithm GA, the best gain rate over five independent runs
(%BestGain), the average gain rate (%AvgGain), and the
average execution time (AvgTime) are reported. Performance
evaluations are performed under storage size constraint, where
the maximal storage space was increased from 500 MB
to 6500 MB in 500 MB increments. The results of the
experiments are presented in Table IV and Table V for the SSP
and LSP sets respectively. In both tables, the best results are
presented in a bold font and the last row provides, for each
approach, an average total execution time and gain rate.

TABLE IV. CP-BJIS PERFORMANCE VS DM AND GA FOR SSP SCENARIO

Smax

(MB)

GA DM CP-BJIS

%Best-

Gain

%Avg-

Gain
Avg-Time %Gain Time %Gain Time

500 20,88 19,34 1 235 18,32 120 20,88 55

1000 34,97 32,82 2940 34,97 144 35,05 52

1500 45,02 44,47 3110 44,48 142 45,79 60

2000 52,68 51,01 3175 45,79 176 53,42 69

2500 60,69 60,24 3340 58,48 176 60,69 72

3000 61,81 60,97 3715 61,81 198 62,95 75

3500 64,06 63,83 3550 63,60 198 64,06 70

4000 63,73 63,38 3210 63,60 183 64,86 78

4500 64,06 63,93 193320 65,49 193 65,98 65

5000 69,30 67,14 3205 65,49 193 70,44 68

5500 70,44 70,44 3680 65,49 192 71,56 78

6000 72,36 72,36 3560 65,49 193 72,36 72

6500 73,48 73,48 3320 65,49 193 73,48 74

AVG 57,96 57,19 3181 55,27 177 58,58 68

Results of the SSP scenario, presented in Table IV, showed
that whatever the value of the storage space , CP-BJIS

outperforms GA and DM approaches for both measures
(execution time and gain rate). The CP-BJIS approach
computes solutions in average 2.6 times faster than DM and
46.77 times faster than GA. In terms of gain rates, as the space
allocated for indexes grows, all algorithms converge towards
selecting indexes with better performances, except for the DM
algorithm that stops converging when exceeds 4500 MB.
Moreover, this algorithm was less efficient and failed to reach
any best solution. This might be due to the additional minimal
frequency constraint of this approach. Indeed, even when the
storage space is not too tight, this constraint may result in
missing some non-frequent, but useful, candidate indexes that
could favour the convergence towards an optimal solution. On
the other hand, GA performs better than the DM method (even
though the latter was almost 18 times faster), it generates the
best solutions 5 times out of 13 (in its best performances
%BestGain) and its average performance rates (%AvgGain)
were close to the best ones (obtained via the CP-BJIS).
However, in all the cases, CP-BJIS remains the best one with
100% of best solutions found in the shortest computing time.

TABLE V. CP-BJIS PERFORMANCE VS DM AND GA FOR LSP SCENARIO

 Smax

(MB)

 GA DM CP-BJIS

%Best-

Gain

%Avg-

Gain
Avg-Time %Gain Time %Gain Time

500 22,58 22,51 8733 22,58 280 22,58 74

1000 40,00 38,09 9538 40,00 301 40,80 96

1500 47,36 46,21 10274 45,97 320 48,36 103

2000 53,40 51,14 9713 51,35 385 53,55 101

2500 57,49 55,82 10115 53,59 371 57,49 107

3000 59,93 59,49 10589 59,48 412 60,60 111

3500 63,07 62,08 10972 62,25 407 63,07 137

4000 65,12 64,16 11365 64,48 435 65,43 149

4500 67,42 66,67 11021 66,27 359 67,66 155

5000 69,93 69,46 12274 67,22 322 70,28 150

5500 72,13 71,84 11713 67,22 330 72,88 128

6000 74,63 74,17 10115 71,44 321 74,63 130

6500 75,58 75,46 10589 71,44 319 75,79 124

AVG 59,13 58,25 10539,31 57,18 350,92 59,47 120,38

Results of the LSP scenario, presented in Table V, showed
slight improvements (less than 2%) in the average gain rates of
all approaches compared to those obtained in the SSP scenario.
By contrast, the average run time needed to obtain these
performances is significantly higher (3.31 times higher for GA,
1.98 for DM and 1.77 for CP-BJIS). This increase in run time
is due to the increase in the number of candidate indexes which
went from 12 to 20. Comparing the average computation time
of the three methods for this larger workload, CP-BJIS was
2.91 times and 87.82 times faster than the DM and GA
approaches respectively. These results showed that our
approach is likely to scale better than the two other approaches
when increasing the number of indexable attributes and the size
of the workload. In terms of solutions’ quality, CP-BJIS was
able to generate the best solutions in all the cases (13 out of

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 27

13), GA generated 4 best solutions (in its best performances
%BestGain) and only one best solution was found by the DM
algorithm. In summary, as also mentioned for the SSP
scenario, the CP-BJIS approach has again considerably
outperformed both GA and DM approaches in all aspects;
execution time, gain rates and the number of best solutions
found.

V. CONCLUSIONS AND PERSPECTIVES

The ISP has always been a focal issue in database design
considering its potential huge search space. The difficulty of
solving this problem illustrates the limitations of existing
approaches which rely, often, on heuristics and meta-heuristics
trying to provide the best trade-off between the quality of
solutions and the execution time. Despite being practical,
however, these approaches do not guarantee to find the optimal
solution and to determine their best set-up parameters is highly
challenging.

In this paper, we have proposed a new exact approach to
address the ISP in the DW environment. More precisely, we
have provided an innovative alternative to state-of-the-art
approaches by using the CP paradigm to model and solve the
problem. Thus, we have considered the ISP as a COP, and a
corresponding CP model was specified and implemented using
Choco, a well-known open-source CP solver. The resolution
process is then automatically supported by the solver.

The effectiveness and efficiency of our approach have been
validated on APB-I, a fairly large benchmark data warehouse,
over several experiments. At first, we conducted an empirical
study to choose the best search strategy, for our model, from
the state-of-the-art generic search heuristics. Obtained results
show that our model performs better with the IBS search
heuristic associated with COS repairing mechanism.
Afterwards, we performed a comparative study against two
well-known approaches, the GA and the DM. Considering
smaller and larger instances of the ISP, the experimental results
confirm the superior performance of our approach for both
cases. Our approach achieves more accurate solutions with a
CPU time that is much shorter than its two other competitors.

Overall, the outstanding performance of our proposed
approach indicates that CP is a promising technology for the
ISP. It can prove optimality for much larger test instances, and
thus, it can be used not only as a physical design framework
expandable on user constraints, but also as a benchmark to
measure other approaches' solutions quality.

As future work, we plan to extend our model to the
selection of multi-attribute indexes. Another interesting
direction consists in accelerating the search process by
developing a custom search strategy dedicated to the ISP or by
integrating approximate search strategies such as meta-
heuristics with Large Neighborhood Search.

REFERENCES

[1] L. Toumi and A. Ugur, “Static and incremental dynamic approaches for
multi-objective bitmap join indexes selection in data warehouses,”

Journal of Supercomputing, vol. 77, no. 4, pp. 3933–3958, Apr. 2021,
doi: 10.1007/s11227-020-03423-7.

[2] R. Kain, D. Manerba, and R. Tadei, “The index selection problem with
configurations and memory limitation: A scatter search approach,”
Comput Oper Res, vol. 133, Sep. 2021, doi: 10.1016/j.cor.2021.105385.

[3] S. Amjad, I. Jellouli, M. Yahyaoui, and L. Benameur, “Efficient of
bitmap join indexes for optimising star join queries in relational data
warehouses,” International Journal of Computational Intelligence
Studies, vol. 9, no. 3, 2020, doi: 10.1504/ijcistudies.2020.10031847.

[4] B. Ziani and Y. Ouinten, “An improved approach for automatic selection
of multi-tables indexes in ralational data warehouses using maximal
frequent itemsets,” Intelligent Decision Technologies, vol. 7, no. 4,
2013, doi: 10.3233/IDT-130169.

[5] E. O’Neil, P. O’Neil, and K. Wu, “Bitmap index design choices and
their performance implications,” 2007. doi:
10.1109/IDEAS.2007.4318091.

[6] S. Chaudhuri, M. Datar, and V. Narasayya, “Index selection for
databases: A hardness study and a principled heuristic solution,” IEEE
Trans Knowl Data Eng, vol. 16, no. 11, 2004, doi:
10.1109/TKDE.2004.75.

[7] L. Bellatreche and K. Boukhalfa, “Yet another algorithms for selecting
bitmap join indexes,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2010, vol. 6263 LNCS. doi: 10.1007/978-3-642-15105-
7_9.

[8] H. Drias and I. Frihi, “ACO based approach and integrating information
retrieval technologies in selecting Bitmap Join Indexes,” in Proceedings
- 2010 IEEE/WIC/ACM International Conference on Web Intelligence,
WI 2010, 2010, vol. 1. doi: 10.1109/WI-IAT.2010.180.

[9] A. Gacem and K. Boukhalfa, “Immune algorithm for bitmap join
indexes,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2012, vol. 7665 LNCS, no. PART 3. doi: 10.1007/978-
3-642-34487-9_68.

[10] R. Bouchakri and L. Bellatreche, “On simplifying integrated physical
database design,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2011, vol. 6909 LNCS. doi: 10.1007/978-3-642-23737-
9_24.

[11] L. Toumi, A. Moussaoui, and A. Ugur, “Particle swarm optimization for
bitmap join indexes selection problem in data warehouses,” Journal of
Supercomputing, vol. 68, no. 2, 2014, doi: 10.1007/s11227-013-1058-9.

[12] P. Ameri, J. Meyer, and A. Streit, “On a new approach to the index
selection problem using mining algorithms,” 2015. doi:
10.1109/BigData.2015.7364084.

[13] K. Aouiche and J. Darmont, “Data mining-based materialized view and
index selection in data warehouses,” J Intell Inf Syst, vol. 33, no. 1,
2009, doi: 10.1007/s10844-009-0080-0.

[14] K. Aouiche, J. Darmont, O. Boussaïd, and F. Bentayeb, “Automatic
selection of bitmap join indexes in data warehouses,” in Lecture Notes in
Computer Science, 2005, vol. 3589. doi: 10.1007/11546849_7.

[15] L. Bellatreche, R. Missaoui, H. Necir, and H. Drias, “A Data Mining
Approach for Selecting Bitmap Join Indices,” Journal of Computing
Science and Engineering, vol. 1, no. 2, 2007, doi:
10.5626/jcse.2007.1.2.177.

[16] P. Kołaczkowski and H. Rybiński, “Automatic index selection in
RDBMS by exploring query execution plan space,” Studies in
Computational Intelligence, vol. 223, 2009, doi: 10.1007/978-3-642-
02190-9_1.

[17] R. Schlosser, J. Kossmann, and M. Boissier, “Efficient scalable multi-
attribute index selection using recursive strategies,” in Proceedings -
International Conference on Data Engineering, 2019, vol. 2019-April.
doi: 10.1109/ICDE.2019.00113.

[18] E. C. Freuder, “Progress towards the Holy Grail,” Constraints, vol. 23,
no. 2, 2018, doi: 10.1007/s10601-017-9275-0.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER
SCIENCE AND ENGINEERING
IJASCSE VOLUME 11 ISSUE 12, 2022 December 31, 2022

WWW.NEW.IJASCSE.ORG DOS: NOV 21, 2022 | 28

[19] I. Mami, R. Coletta, and Z. Bellahsene, “Modeling view selection as a
constraint satisfaction problem,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2011, vol. 6861 LNCS, no. PART 2. doi:
10.1007/978-3-642-23091-2_33.

[20] E. C. Freuder, “Constraints: The ties that bind,” in Proceedings of the
National Conference on Artificial Intelligence, 2006, vol. 2.

[21] J. G. Fages and C. Prud’Homme, “Making the first solution good!,” in
Proceedings - International Conference on Tools with Artificial
Intelligence, ICTAI, 2018, vol. 2017-November. doi:
10.1109/ICTAI.2017.00164.

[22] C. Prud’homme, J.-G. Fages, and X. Lorca, “Choco Documentation.
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING SAS
(2016),” URL http://www. choco-solver. org, 2019.

[23] P. Refalo, “Impact-based search strategies for constraint programming,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
3258, 2004, doi: 10.1007/978-3-540-30201-8_41.

[24] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting
systematic search by weighting constraints,” in Frontiers in Artificial
Intelligence and Applications, 2004, vol. 110.

[25] L. Michel and P. van Hentenryck, “Activity-based search for black-box
constraint programming solvers,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2012, vol. 7298 LNCS. doi: 10.1007/978-3-
642-29828-8_15.

[26] O. Council, “Apb-1 olap benchmark, release ii.” 1998. Accessed: May
07, 2022. [Online]. Available: http://www.olapcouncil.org

[27] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal, “Last conflict based
reasoning,” Frontiers in Artificial Intelligence and Applications, vol.
141, 2006.

[28] S. Gay, R. Hartert, C. Lecoutre, and P. Schaus, “Conflict ordering search
for scheduling problems,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2015, vol. 9255. doi: 10.1007/978-3-319-
23219-5_10.

