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Abstract: The democratization of plug-in hybrid vehicles 

as well as purely electric vehicles implies a surplus of 

demand on the distribution networks. Vehicle-to-Grid 

aims to meet this increased demand by using vehicles no 

longer as simple loads for the electricity network but as 

players carrying out two-way energy exchanges. The work 

presented in this article proposes a real-time “Grid-to-

Vehicle/Vehicle-to-Grid” control algorithm for an 

electrical distribution system. The results show that the 

system makes it possible to achieve energy gains shared 

between the actors while efficiently recharging the 

participating vehicles. 
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1. Introduction 

In the current context, the automobile is essential and 
occupies the daily universe of our society [1]. Indeed, 
noise pollution and greenhouse gases as well as a 
constantly increasing dependence on fuel are leading 
to a new interest in renewable energies and their uses, 
in particular as an alternative solution to thermal 
vehicles [2-4]. The electric vehicle (EV) is a solution 
put forward by car manufacturers to gradually replace 
conventional vehicles [5]. This transport solution is 
dedicated in particular to travel in urban areas as well 
as to the distribution of goods in the last kilometers 
[6-8]. 
On the other hand, the energy need for electricity is 
constantly growing [9], despite efforts to increase the 
energy efficiency of the various electrical appliances. 
Producing a sufficient but not excessive quantity of 
this resource to adapt supply to demand in real time 
and ensure continuity of service with a stable 
electricity network represents an ongoing challenge. 
It is indeed difficult and costly for electricity 
producers and distributors to store surpluses produced 
or in transit on the network and return them when 
demand exceeds production. These mechanisms 
require heavy infrastructures distributed throughout 
the network and generate significant energy losses 
[10-12]. The idea behind the Smart Grid is to deport 
some of these control mechanisms to consumer 

agents, by integrating their modest infrastructures 
into the process of stabilizing the network and also by 
modifying consumption behavior [13-16]. We will 
deal with part of this smart grid problem by focusing 
on what can be done with a common good, the car, in 
order to ensure the efficiency of EV charging systems 
and guarantee energy stability in electrical networks 
[17,18]. This technical concept, called G2V/V2G 
(Grid to Vehicle / Vehicle to Grid) [19], is based on 
the idea of using the batteries of parked electric cars 
in both directions and with flexibility to [20-22]: 

 absorb and store the electricity produced in excess 
on the network; 

 constitute a reserve of electricity to feed the large 
network or a domestic network if necessary. 
 

In [23,24], a centralized G2V/V2G control algorithms 
have been proposed. The limit of the centralized 
approach is its infeasibility with high penetration of 
plug-        in electric vehicles (PEV). Furthermore, its 
implementation is expensive and sometimes even 
intractable because it requires large bandwidth 
(throughput) and extensive two-way communication. 
In this regard, it is interesting to adopt a decentralized 
G2V/V2G strategy to improve the performance of 
high penetration scenarios of PEVs. In [25], a 
decentralized control algorithm was proposed, the 
authors considered a time-invariant energy pricing 
system throughout the PEV recharge scheduling 
period. This is unrealistic as electricity prices 
fluctuate during the day depending on energy demand 
and the availability of electricity. In [26], a 
decentralized G2V/V2G control algorithm iteratively 
solves the optimal control problem even with an 
asynchronous estimation. However, this document 
did not consider PEVs to be a distributed storage 
resource. In [27], the authors proposed a concept of 
PEV charging selection that maximizes driver 
convenience levels by selecting a specific subset of 
connected PEVs. However, the document did not 
consider the concept of V2G or the uncertainties of 
renewable energy sources. 
The proposed algorithm, Real-Time Decentralized 
Vehicle/Grid (RT-DVG), is based on advisory signals 
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sent by the Low Voltage Distribution Network 
(LVDN) controller. The latter produces advisory 
signals that predict the state of the total network 
energy demand (on-peak, mid-peak, or off-peak) 
based on the demand of the previous days. This 
sequence of signals, which is always updated in real 
time, presents the state of the network during the time 
interval which starts from the time of arrival of the 
PEVs until the time of departure of the PEV. Each 
advisory signal is defined using values below or 
above an average reference value calculated from the 
data of the last few days. 

2. Optimization problem formulation: 

Our objective function of G2V/V2G scheduling aims 
to reduce the peak power demand and smooth the 
power curve variation for 24 hours by using the 
advisory signals sent to the energy management 
system (EMS). With the yellow signal (mid-peak) the 
reduction of the peak is done by postponing the 
recharging of the PEVs. However, with the red (on-
peak) signal, all PEVs in the LVDN try to reduce the 
disproportion between the reference average demand 

onpeakavgP ,
 and the average energy demand per hour in 

the LVDN (See Table 1).  

Table 1: Definition of Advisory Signals. 

Signal Limit Required action 

Green 
Request ≤ 

offpeakavgP ,
 

The system is off-peak. The 

G2V (charging PEVs) is 

encouraged 

Yellow 

offpeakavgP ,
< 

Request ≤ 

onpeakavgP ,
 

The system is mid-peak. 

Energy demand is not high but 

postponing PEV charging (if 

possible) is preferred. 

Red 
Request > 

onpeakavgP ,
 

The system is on-peak. 

Delaying the recharge can help 

stabilize the system, while 

respecting the departure time 

and the SOC of the PEV. V2G 

is necessary. 

 
The average energy demand per hour in the LVDN 

h

avgD  is calculated by adding the base load energy 

demand h

baseD  and the energy demand of the PEVs for 

each node h

PEVD , then averaging over the total number 

of nodes in the network: 
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The objective function of the G2V/V2G scheduling 
of all LVDN PEVs is given by: 
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(5) 

Whith M is the group of nodes that contains PEVs in 
the network, Cbattery is the maximum charge capacity 
of the battery, and t  represents the time increment 
knowing that the unit of time in our work is the hour. 
The constraints considered are given in Eq (5). The 
constraint purpose of the state of charge (SOC)  is to 

optimize the life of the battery. maxR  is the maximum 

battery recharge rate. The third constraint is added to 
indicate that the battery must be fully charged before 

the deadline. The boolean variable k  indicates if the 

PEV is hooked up or not. 
 

Constraints imposed by the LVDN controller: 

At the controller, the voltage deviation 
kV  at each 

node should not exceed 5% of the rated voltage, 
otherwise the node will be turned off. 

MkhVV hkhk  ,%,5,1,
 (6) 

To avoid cases of overload due to the arrival of some 
PEVs together, the controller defines a constraint (7) 
on the maximum energy demand to limit the 
consumption of electricity at every interval of 1 hour: 
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h

gDmax,
, h

yDmax,
 and h

rDmax,
are all reference variables 

that control the energy demand profile and can be 
configured by the operator to meet his specific needs. 

3. The algorithm of the proposed approach 

The steps of our proposed RT-DVG algorithm are 

shown in Figure 1. Each PEV arrives at arivalt  and 

sends its identifier information to the LVDN 
controller to request the triggering of the G2V/V2G.  

 
Figure 1: Algorithm diagram of the proposed 

approach. 
 

To avoid voltage violation, the controller verify all 
nodes and disables the node that violates the 
constraints. If there isn't any of violation, it returns a 

response packet S which presents the distribution of 
the advisory signals over the interval of time between 
the arrival and the departure of the PEV. The PEV 
receives this packet and then executes the proposed 
algorithm in order the optimal action to do: G2V (if 
green signal), V2G (if red signal), or idle (if yellow 
signal). The red signal indicates that the power 
demand of the system is high (on-peak) and that V2G 
is necessary. The yellow signal indicates that the 
system demand is average (mid-peak) and that it is 
preferable to recharge the PEV later if necessary. The 
green signal is displayed when the system demand is 
not high (off-peak) (Table 1). In this case, it is 
encouraged to postpone recharging the PEV and store 
the extra energy for use when the signal turns red. 
The recharging of the PEV is postponed only when 
the number of green signals in S is greater than the 
hours of recharging required X  (Figure 1). For the 
discharge (V2G) of the PEV, the number of green 
and yellow signals must be equal to the sum of X  
and the number of hours necessary to recover the 
hours of the V2G. By running the RT-DVG, each 
PEV establishes its real-time G2V/V2G scheduling. 
As a result, the SOC is actualized and the OpenDSS 
is called upon to perform the system power flow 
analyses. This process repeats each time at the start of 
the next time interval (next hour) until the PEV start 
time is reached. Thus, the PEV becomes 
disconnected. 

4. Test system 

Figure 2 represents the electricity distribution 
network considered. Indeed, we have modified the 
model of the electricity distribution network 
described in [28] by adding nodes representing the 
controllers of the LVDNs. This network consists of 9 
LVDNs from which 9 nodes will play the role of 9 
controllers of these LVDNs. Once the PEV initiates 
the action of the G2V/V2G during the simulation, 
OMNET++ sends a request to request the energy 
from the OpenDSS. We also used the communication 
infrastructure of Figure 3.  

 
Figure 2: Single-line diagram of the power 

distribution network. 
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An Ethernet passive optical network (EPON) of 9 
nodes “one optical network unit (UNO) per LVDN” 
is evenly distributed over the entire network of 9 
LVDNs. We used one mesh portal point (MPP) per 
LVDN to connect each controller to its group of 
PEVs [29]. 

 
Figure 3: The Fiber-Wireless (WiFi) communications 

infrastructure. 

5. Simulation results 

5.1 Performance in terms of power 

Figures 4 to 6, shows the results of the RT_DVG 
method for various penetration levels (PLs) of VEPs 
compared with the scenario of random charging. For 
a PL of 30%, the maximum reduction in peak energy 
demand reaches 10%. For higher PLs, the reduction 
in peak energy demand becomes more significant and 
increases to the maximum value (PL =  60%).  

 
(a)  

 
(b)  

Figure 4: System power demand in terms of different 
penetration levels (PLs) of the PEVs: a) Random 

charging scenario, b) RT-DVG scenario. 
 

From Figure 4, a similar behavior of power demand 
is observed for PLs of 40% and 60% between 11 PM 
and 2 AM. We conclude that for PLs that exceed 40 
%, a few PEVs have not received authorization for 
recharging because the maximum authorized power 

maxD has been reached. Therefore, it is advisable in 

this case for these PEVs to do the V2G, if possible, 
and to help the network by returning energy to it. 
This allows PEVs to gain in the price of electricity 
since this price increases when there is a high demand 
for energy (on-peak periods). We also note that the 
energy demand during the period between 6 AM and 
11 AM (mid-peak) is kept unchanged for all the PLs. 
The scenarios of Random Charging present two 
challenges. In first, large peaks appear on the power 
demand curve (Figure 4(a)). Second, they show 
remarkable voltage deviations (Figure 5(a)) and 
power losses (Figure 6(a)) that increase with PL. 
Figure 4(b) shows that, for a PL of 60%, the 
maximum decrease in peak demand for RT-DVG 
exceeds that of Random Charging by a percentage of 
20%. Also, our RT-DVG shows less voltage 
deviations than Random Charging for different PLs, 
as shown in Figure 5(b). The proposed method results 
shown in Figure 6(b) indicate a significant 
improvement in reducing power losses in on-peak 
periods. For a PL of 60%, the total power losses at 6 
PM are are diminished from 33 [kW] to 20 [kW] with 
the RT_DVG, which is equivalent to a reduction of 
40%. 

 
(a)  

 
(b)  

Figure 5: Voltage deviations in terms of different 
penetration levels (PLs) of the PEVs: a) Random 

charging scenario, b) RT-DVG scenario. 
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(a)  

 
(b)  

Figure 6: Total power losses in terms of different 
penetration levels (PLs) of the PEVs: a) Random 

charging scenario, b) RT-DVG scenario. 
 
Comparing between the RT-DVG and the centralized 
algorithm IntVGR [30] (Figure 7), we observe that 
the peaks of the power demand during the whole day 
decrease using these two algorithms, but the curve of 
the energy demand of the RT-DVG is more 
attenuated than that of the IntVGR. It should also be 
noted that in the case of G2V/V2G control algorithms 
for a centralized electrical distribution system, the 
distribution management system (DMS) requires a 
global knowledge of all the parameters of the PEVs 
to solve the optimization function while respecting 
the needs of each PEV. While the decentralized RT-
DVG algorithm is implemented locally in each PEV 
and only considers advisory signals indicating the 
status of the system in terms of energy demand. 
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Figure 7: System power demand for centralized 

IntVGR with 40% of PL. 

5.2. Performance in terms of communication 

To examine the performance of the communication 
infrastructure of Figure 3, we examined the 
throughput and the transmission delay between the 
PEVs and the DMS for the following values of PLs: 
42% and 84%.  
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Figure 8: Throughput measured between the PEVs 
and the LVDN controller. 

 
A comparison of study is carried between our 
decentralized algorithm and the centralized algorithm 
IntVGR to assess improvement of the performance in 
terms of communication. In Figure 8(a), the 
throughput measured between the PEVs and the 
LVDN controller starts to increase at the expected 
arrival time of the PEVs ((5 PM - 6 PM) and reaches 
its maximum value around 8 PM. Then it stays 
almost constant until the time of departure of the 
PEVs (6 AM - 7 AM). It is because of with the fact 
that the the VEPs come in the afternoon and begin to 
exchange demand requests energy with the LVDN 
controller every hour to plan their G2V/V2G 
schedules. From Figure 8(a), using the RT-DVG 
algorithm, the throughput reaches a maximum of 
value (0.65 [Mbps]), so that using the centralized 
IntVGR method, the throughput reaches a maximum 
value of 2.1 [Mbps] (Figure 8 (b)). This increase in 
throughput with the centralized algorithm is due to 
the excessive exchange of notification packets (every 
second). While with the decentralized algorithm, the 
information exchanged between the LVDN controller 
and PEVs are limited to control messages (every 
hour).  
Figure 9 presents the delay variations of the data 
transferred between the LVDN controller and the 
PEVs. The transmission delay with the proposed 
approach varies from 0.35 [ms] to 0.8 [ms], while the 
Int-VGR measures a delay almost equal to 1 [ms] 
(Fig. 9 (b)). This delay reduction with the RT-DVG 
algorithm is explained by the fact that this algorithm 
uses fewer packet types between the PEVs and the 
LVDN controller. 
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Figure 9: Transmission delay measured between the 
PEVs and the DMS. 

6. Conclusion 

In this article, we proposed a real-time G2V/V2G 
control algorithm for a decentralized electrical 
distribution system in LVDNs where each PEV 
defines its own G2V/V2G schedule based on 
advisory signals sent by the controller. of the LVDN. 
The simulation results show a significant 
improvement in the performance in terms of 
communication of the decentralized RT-DVG 
algorithm compared to the centralized IntVGR 
algorithm. Indeed, RT-DVG requires less bandwidth 
and less delay (throughput of 0.65 [Mbps] and delay 
of below than 0.8 [ms]) than InIVGR (throughput of 
2.1 [Mbps] and delay of 1.074 [ms]). On the other 
hand, the simulation results in terms of power proved 
the efficiency of proposed RT-DVG algorithm in 
reducing the peak power demand while minimizing 
the power losses. We can finally conclude that the 
RT-DVG can be considered effective and meets the 
requirements of PEV drivers. 

7. Future Scope 

This work gives new directions for future 

perspectives. Each of the discussed approaches: 

centralized and decentralized has its pros and cons. 

An interesting next step may be to find an 

intermediate solution that develops an adaptive 

approach by combining the centralized mode and the 

decentralized mode. 
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