Force field calculation of GABA using *ab-initio* methods and Raman spectroscopy

BOUTASTA Amel^{1*}, BENOSMAN Abdelhakim¹, CHERIET Mouna², KHELLAF Ammar³

¹ Department of physics, Theoretical Physics Laboratory, University of Tlemcen, Tlemcen 13000, Algeria
 ² Center for Biotechnology Research (CRBT), Constantine, Algeria.
 ³ École Nationale Polytechnique de Constantine, Laboratoire des Mathématiques Appliquées, *Algeria*.

*Corresponding author: amel.boutasta@univ-tlemcen.dz

Abstract

In this paper, we study in a theoretical way the γ -Aminobutyric acid GABA, which has many important biological functions. The optimized molecular structure was studied by the DFT/B3LYP method with a 6-31 G (d, p) basis set, we used the software Gaussian 09. we are considering the vibrational spectra of the molecule. The Raman spectrum of GABA was recorded in the 4000-40 cm⁻¹ region. This spectrum constitutes the experimental support that allows the theoretical reproduction of the vibrational frequencies. Good agreements were obtained between the observed and calculated frequencies. The scale factors are adjusted to obtain a good agreement between the calculated and observed frequencies. The results obtained reproduce the experimental frequencies.

Keywords: y-Aminobutyric acid, DFT, vibrational spectra, Gaussian,

I. Introduction

Drug design can be made rational when the three-dimensional structure of the receptor is known. In the majority of cases, the structure of the receptor is not known. To do this, we model the site of action of the receptor by the knowledge of biologically active molecules thanks to the methodologies of molecular mechanics and dynamics coupled with molecular graphics. γ -Aminobutyric acid (GABA), C₄H₉NO₂, is a nonprotein amino acid that works as a neurotransmitter in the mammalian central nervous system, as well as plants [1].

It works as an inhibitory neurotransmitter in the neuronal excitability control, it blocks, or inhibits, certain brain signals and WWW.IJASCSE.ORG DOS: OCTOBER 12, 2022 decreases activity in the nervous system [2-7], being of high pharmaceutical relevance due to its physiological activities in cognition, learning, and memory. [8-11]. Since the concept of receptors was introduced, molecular pharmacology has been interested in the question of interactions between compounds.

The spectra in these systems are difficult to interpret because the presence of many oscillators creates modes that span much of the spectral range. To solve this problem, we use analysis in normal coordinates. More precisely, to determine the structure of the active molecule, we start from crystallographic data. A molecular force field is determined by comparison between the calculation of the normal modes of vibration of the isolated molecule and the experimental Raman More spectra. precisely, to determine the structure of the active molecule, and the vibrational properties of the GABA molecule, crystallographic data are used. A molecular force field is determined by comparison between the calculation of the normal modes of vibration of the isolated molecule and the experimental Raman spectra. The theoretical calculation is performed by the ab-initio quantum mechanical method based on the DFT (density functional theory) [12]. This theory is an excellent method to calculate molecular geometries and vibrational frequencies, etc. [13,14].

II. The geometry

The structure of γ -aminobutyric acid (GABA) derived from X-ray diffraction was first determined by Steward in 1973 [15] Figure 1.

In 1983 Weber et al. [16] studied the structure of GABA at low temperature (122 K) by neutron diffraction. This technique is necessary to determine the position of hydrogen atoms more accurately.

Fig. 1 Atomic numbering of GABA

The compound crystallizes in a monoclinic system with four molecules per cell. The positions of the four molecules, according to the crystallographic data are as follows: (x, y, z) (-x, -y, -z) (+1/2x, -1/2y, z) and (-1/2x, +1/2+y, -z).

At 122 K, the GABA crystal is monoclinic with space group P2₁/a with Z = 4 (4 molecules/cell). [16] The parameters of the unit cell for GABA are: a = 8.2140 Å, b = 10.0000, c = 7.2008 Å, $\beta = 110.5900^{\circ}$.

III. Internal and symmetry coordinates

The internal coordinates related to the elongations, angular deformations and torsions are 46 in number which are used in the Redong program for the calculation of the matrix of the constants of force [17]. They are shown in the table 2.

 Table 2. Internal coordinates for GABA

In plane		Out of plane		
Internal coordinate	Assignment	<i>i</i> nternal coordinate	Assignment	
R1	O4–C2	R24	C2-C1-C7	
R2	O3–C2	R25	C1-C7-H10	
R3	C2-C1	R26	С9-С7-Н10	
R4	C1-C7	R27	С1-С7-Н8	
R5	С7-С9	R28	С9-С7-Н8	
R6	C9-N13	R29	Н10-С7-Н8	
R7	C1-H6	R30	С1-С7-С9	
R8	C1-H5	R31	С7-С9-Н12	
R9	C7-H10	R32	N13-C9-H12	
R10	С7-Н8	R33	C7-C9-H11	
R11	С9-Н12	R34	N13-C9-H11	
R12	C9-H11	R35	H12-C9-H11	
R13	O3-H14	R36	C7-C9-N13	
R14	N13-H15	R37	C9-N13-H15	
R15	N13-H16	R38	C9-N13-H16	
R16	O4-C2-O3	R39	H15-N13-H16	
R17	O4-C2-C1	R40	C2-O3-H14	
R18	O3-C2-C1	R41	Bal C2–O3	
R19	С2-С1-Н6	R42	Tor C2–C1	
R20	С7-С1-Н6	R43	Tor C1-C7	
R21	С2-С1-Н5	R44	Tor C7–C9	
R22	С7-С1-Н5	R45	Tor C9-N13	
R23	H6-C1-H5	R46	Tor C2–O3	

The factor group C_{2h} and the optical vibrations of the grating will be classified according to the following irreducible representation (1):

 $\Gamma_{vr} = 6Ag + 6Bg + 5Au + 4Bu \quad (1)$

The molecule has 16 atoms, so we expect 42 (3N-6) internal vibrations, which will couple according to the symmetry elements of the C_{2h} group. Then, the irreducible representation is given by the following equation (2)

$$\Gamma vr = 42Ag + 42Bg + 42Au + 42Bu \quad (2)$$

The molecule has only 42 degrees of freedom. Thus, we have 4 tree-type redundancy relations. Also, we add the 3 rotations and 3 translations of the whole (table3) from these 46 coordinates of local symmetry

 Table 3: Symmetry coordinates of GABA

Symmetry coordinate	Assignment			
Internal vibrations				
S1=R1	AS CO2			
S2=R2	St C2C1			
S3=R3	St C1C7			
S4=R4	St C7C9			
S5=R5	St CN			
S6=R6	Tor C2O3			
S7=R46	SS C1H2			
S8=R8+R7	SS C7H2			
S9=R9+R10	SS C9H2			
S10=R11+R12	AS C1H2			
S11=R7-R8	AS C7H2			
S12=R9-R10	AS C9H2			
\$13=R11-R12	SS NH2			
S14=R14+R15	AS NH2			
S15=R14-R15	St OH			
S16=R13	Bend CO2			
S17=2.R16-R17-R18	Ipb CO2			
S18=R17-R18	Sci C1H2			
S19=4.R23-R19-R20-R21-R22	Sci C7H2			
S20=4.R29-R25-R26-R27-R28	Sci C9H2			
S21=4.R29-R35-R32-R23-R34	Sci NH2			
S22=2.R39-R37-R38	Wag C1H2			
S23=R19-R20+R21-R22	Wag C7H2			
S24=R25-R26+R27-R28	Wag C9H2			
S25=R39+R37+R38	Wag NH2			
S26=R31-R32+R33-R34	Twi C1H2			
S27=R19-R20-R21+R22	Twi C7H2			
S28=R25-R26-R27+R28	Twi C9H2			
S29=R31-R32-R33+R34	Twi NH2			
S30=R37-R38	Roc C1H2			
S31=R19-R20-R21-R22	Roc C7H2			

	W	W	W	΄.I.	JAS	CS	E.(OR	G
--	---	---	---	------	-----	----	-----	----	---

DOS: OCTOBER 12, 2022

S32=R25+R26-R27-R28	Roc C9H2
S33=R31=R32-R33-R34	Bend CCC
S34=-R23-R19-R20-R21-	Pand CCC
R22+5R34	Bellu CCC
S35=-R29-R25-R26-R27-	Pand CCN
R28+5R30	Bellu CCN
S36=-R35-R31-R32-R33-	Band COH
R34+5R36	Della COII
S37=2.R40-R16-R18	Opb CO2
S38=R41	Tor C2C1
S39=R42	Tor C1C7
S40=R43	Tor C7C9
S41=R44	Tor CN
S42=R45	AS CO2
External vibrations	
S43=Tx	
S44=Ty	
S45=Tz	
S46=Ra	
S47=Rb	
S48=Rc	

AS: anti-symmetric stretching mode; **SS**: symmetric stretching mode; **Sci**: scissoring mode; Wag: wagging mode; **Twi**: twisting mode; **Roc**: rocking mode; **Tor**: torsional modes; **Bend**: deformation mode; **Ra**, **Rb** and **Rc** are rotational lattice modes around the principal axes a, b, c, of the molecule, respectively. **Tx**, **Ty**, and **Tz** are translational lattice modes along x, y and z crystallographic axes, respectively.

IV. Computation method

The quantum chemical, the optimization and the force field calculations of GABA are performed using *ab-initio* calculation methods based on the density functional theory (DFT). Using Becke's exchange functional [18] and B3LYP (Lee-Yang-Parr) level of theory [19,20], associated with the basis of atomic functions of Gaussian Double-Zeta types containing orbitals of polarization (6-31 G (d, p)) [21,22], so the purpose is to calculate the normal vibration modes and using the Gaussian 09 program [23].

V. Results and discussion

The Raman spectra of the molecule were recorded from 3000 to 40 cm⁻¹. This spectrum was used to adjust the scaling

factors of the molecule. The values obtained are given in Table 3.

The theoretical vibrations have been calculated according to the method described above, each mode is calculated with the contributions to the potential energy distribution (PED). These results are presented in Table 5 from which there is a very good agreement between the calculated frequencies and the observed data.

VI.I. Scale Factors

First, we choose 22 scale factors, each one is related to a type of internal coordinate. After bringing the calculated frequencies as close as possible to the experimental frequencies, and to refine the force constants, only 16 factors were kept. These factors range between 0.89 and 1.00. The scale factors they have given in table 4.

Table 4: Scaling factors for GABA from DFTcalculations

Internal coordinates	Scaling	
Internal coordinates	factors	
νΟС	0.98	
νCH	0.98	
δΗΟΟ	0.99	
δ ССН	0.90	
δ ΗΝΗ	0.94	
δΗCΗ	0.99	
Bal OCOC	0.89	
Tor CN	0.90	
ν O=C, ν CC, ν CN, ν OH, ν NH,		
δ OC=O, $δ$ O=CC, $δ$ OCC, $δ$ CCC, δ HCN, $δ$ CCN, $δ$ CNH, $δ$ HOC, Tor CC, Tor CO	1.00	

v: stretching, δ: in plane bending, Tor: Torsion, Bal: Balancement.

VI.II. Vibrational analysis

The NH stretching modes, symmetric and anti-symmetric are calculated 3498 and

WWW.IJASCSE.ORG DOS: OCTOBER 12, 2022

3583 cm⁻¹ respectively. We find an OH stretching mode linked to the hydroxymethyl group calculated at 3362 cm⁻¹. This is in agreement with previous studies [24-26]. The PEDs show that the NH and the OH stretching modes are almost pure modes.

The CH stretching modes are calculated between 2910 and 3129 cm–1for GABA, they are in agreement with the experimental data. The symmetric modes coupled with the anti-symmetric stretching mode of the methylene group are calculated at 2910, 2921 and 3085 cm⁻¹ and observed at 2911 and 2938 cm⁻¹. However, the antisymmetric modes of the methylene group coupled with the NH symmetric stretching mode is calculated at 2963 cm⁻¹ and observed at 2953 cm⁻¹. The intensity of these bands is very strong in Raman.

This region between 1700 and 700 cm⁻¹ is characterized by many strongly coupled modes involving HCO, HCH and CCH deformations.

Table 5. The observe	ed an	d cale	culated vib	rational
frequencies (cm ⁻¹)	and	the	potential	energy
distribution for GABA	1			

Calc.	Exp.	Assignements (%)
71	75	70 (Tor C2C1)
97	96	54 (Tor C1C7) +10 (Tor C7C9)
183	*	47 (Tor C1C7) +39 (Tor C7C9)
254	*	48 (Bend CCC)
301	291	22 (Bend CCC) +22 (Tor C1C7)
328	324	39 (Tor CN) + 30 (Tor C2O3)
433	*	33 (Ipb CO2) +30 (Tor C1C7)
474	483	21 (Bend CCN) +18 (Bend CCC)
576	581	38 (Bend CO2) +18 (St C2C1)
688	*	27 (Opb CO2) +16 (Tor C1C7)
792	792	18 (Roc C7H2) +14 (Bend CO2)
873	963	30 (Roc C9H2) + 18 (RocC1H2)
889	882	25 (St C7C9) +24 (St C2C1)
922	*	28 (Roc C1H2) +19 (Roc C7H2)
966	*	20 (Roc C7H2) + 20 (Tor C2O3)
999	998	27 (Wag NH2) + 26 (St C1C7)
1036	1030	40 (Tor C2O3) +18 (Roc C7H2)
1061	1070	17 (Roc C9H2) + 16 (St CN)
1105	1104	28 (Twi C1H2) + 13(St CN)
1135	1130	22 (Twi C1H2) +20 (Twi C7H2)
1227	*	28 (Twi C1H2) +19 (AS CO2)
1286	1292	22 (Twi C7H2) +20 (Twi C9H2)
1315	1316	31 (AS CO2) +16 (Twi C1H2)
1342	1341	32 (Twi C9H2) +14 (Twi NH2)
1364	*	41 (Wag C1H2) +26 (Twi C7H2)
1385	1404	62 (Wag C7H2)
1422	1426	62 (Wag C9H2)
1482	1473	68 (Bend COH)
1503	1500	91 (Sci C1H2)
1518	*	80 (Sci C7H2)
1530	*	90 (Sci C9H2)
1663	1664	95 (Sci NH2)
1851	*	74 (SS C2O4)
2910	2911	74 (SS C9H2) +21 (AS C9H2)
2921	2926	60 (SS C1H2) +25 (AS C1H2)
2931	2938	78 (SS C7H2)
2963	2953	42 (AS C9H2+40 (SS NH2)
3085	*	50 (AS C7H2) +35 (AS C9H2)
3129	*	72 (AS C1H2)
3247	*	99 (St OH)
3498	*	98 (SS NH2)
3583	*	98 (AS NH2)

The scissoring modes are calculated between 1700 and 1500 cm^{-1} with a potential energy distribution (PED) of not less than 80%. These deformation bands show weak bands in Raman.

However, the deformation bands which present intense bands in Raman correspond

to the wagging mode, which contribute to different frequencies calculated at 1364, 1385 and 1422 cm⁻¹ and observed at 1404 and 1426 cm⁻¹.

There are other bands corresponding to the contribution of the C-O torsion modes coupled to the rocking mode of methylene group and due to the small contributions of the COC, CCH and OCH deformation modes are calculated in the range of 1100 and 900 cm⁻¹.

The bands calculated at 1105, 1135, 1225 and 1286 assigned to the angular torsion mode of the methylene group are observed at 1104, 1130 and 1292 cm^{-1} .

Strong couplings of the vibrations are found in the region below 700 cm⁻¹. According to the PED, the normal modes of vibration in this region is assigned to of angular deformations of the heavy atoms) coupled with torsions around the C-O and C-C bonds, which is in agreement with the previous works [24-26].

VII. Conclusion

In this work we have performed our calculations by ab initio methods based on DFT using exchange and correlation functions of type B3LYP using the Gaussian 09 program. On the other hand, these theoretical data (partial charges, force constants) can be used to

constitute a force field in the modeling of the dynamic properties and the structure of GABA. We use the Redong program which is based on the transformation of the constants to the space of Cartesian coordinates to the space of internal coordinates. Then, we refine the force constants. Hence, we apply the least squares method and a normal mode decomposition for the determination of the non-redundant coordinates. Thus, this calculation provides access to the harmonic force constants and calculates in the harmonic approximation the vibration modes. Vibration spectroscopy allows as to verify the validity

of the geometrical calculations and to advance in the problem of band allocation. Thus, it is possible to make between theoretical and experimental approaches. From the results obtained, are quite correct, but it is however very often limited to the determination of frequencies.

References

[1] Y. Seher, O. Filiz & B. Melike, Plant Systematics and Evolution, 2013299, pp 403–412

[2] M. Jelitai, E. Madarasz, in: Int. Rev. Neurobiol., (2005) 27–62.

[3] M. Watanabe, K. Maemura, K. Kanbara, T. Tamayama, H. Hayasaki, in: Int. Rev. Cytol., (2002) 1–47.

[4] Y. Ben-Ari, J.-L. Gaiarsa, R. Tyzio, R. Khazipov, Physiol. Rev. 87 (2007) 1215–1284.

[5] D. Ma, P. Lu, C. Yan, C. Fan, P. Yin, J. Wang, Y. Shi, Nature 483 (2012) 632–636.

[6] T.M. Anderson, A.J. Garcia, N.A. Baertsch, J. Pollak, J.C. Bloom, A.D. Wei, K.G. Rai, J.-M. Ramirez, Nature 536 (2016) 76–80.

[7] W.C. Oh, S. Lutzu, P.E. Castillo, H.-B. Kwon, Science 353 (2016) 1037–1040.

[8] S. Blanco, J.C. Lopez, S. Mata, J.L. Alonso, Angew. Chem. Int. Ed. 49 (2010) 9187–9192.

[9] I.K. Song, Y.K. Kang, J. Mol. Struct. 1024 (2012) 163–169.

[10] M. Wenger, J. Bernstein, Angew. Chem. Int. Ed. 45 (2006) 7966–7969.

[11] E.J.C. de Vries, D.C. Levendis, H.A. Reece, CrystEngComm 13 (2011) 3334–3337.

[12] P. Hohemberg et W. Kohn, Rev. B 136 (1964) 864

[13] SY. Lee, BH. Boo, Bull Korean Chem Soc. 17 (1996) ;760-764.

[14] FJ. Devlin, JW. Finley, PJ. Stephens, MJ. Frish . J Phys Chem. 99 (1995) 16883-16902. [15] E. G. Steward, R. B. Player and D. Warner Acta Cryst. (1973). B29, 2038-2040.

[16] H. S. werber, B. N. Craven & R. K. Mc Mullan (1983) Acta Cryst. B39, 360.

[17] T. Miyazawa, J. Chem. Phys. 29 (1958) 246.

[18] A.D. Becke, Rev. Phys. A38 (1988) 3098.

[19] C. Lee, W. Yang, R.G. Parrn Phys. Rev. B 37 (1988) 785.

[20] A.D. Becke, J. Chem.Phys. 98 (1993) 1372.

[21] W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem.Phys. 56 (1972) 2257.

[22] P.C.Hariharan, J.A. Pople, Theor. Cim. Acta, 28 (1973) 213.

[23] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, Kobayashi, Normand. R. J. Κ. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009). [24] M. Dauchez, P. Derreumaux, P. Lagant, G. Vergoten, M. Sekkal, M. Legrand, Spectrochim. Acta 50A (1994) 87. [25] K. Rasmussen, Acta Chem. Scand. A36 (1982) 323.

[26] I. Taleb-Mokhtari, M. Sekkal-Rahal,G. Vergoten, Spectrochim. Acta 59 A(2003)

[27] J. Cai, Y. Lu, L. Gan, Y. Zhang, C. Zhou, Recent advance in the research of piperazine-containing compounds as antimicrobial agents, Chin. J. Antibiot. 8 (2009) 3.

[28] L.L. Gan, Y.H. Lu, C.H. Zhou, Advances in the research of piperazine compounds as enzyme inhibitors, Chin. J. Biochem. Pharm. 30 (6) (2009) 127-131.

[29] L.H.D.N.B. Colthup, S.E. Wiberly, Introduction to IR and Raman Spectroscopy, Academic Press, New York, 1990. TS - CrossRef Metadata Search M4-Citavi.

[30] R. M. (Robert M. Silverstein, F. X. Webster, D. J. Kiemle, and D. L. (David L. Bryce, Spectrometric Identification of Organic Compounds.

[31] M. Sekkal, P. Legrand, G. Vergoten, M. Dauchez, Spectrochim. Acta 48A (1992) 959.

[32] I.N. Taleb-Mokhtari, M. Rahal-Sekkal,G. Vergoten, Spectrochim. Acta59A (2003) 607.

[33] N. Benbrahim, M. Sekkal-Rahal, G. Vergoten, Spectrochim. Acta 58A (2002) 3021.

[34] I. Kouach-Alix, M. Dauchez, M. Sekkal, G. Vergoten, J. Raman Spectrosc. 26 (1995) 223.

[35] N. Sekkal, I.N. Taleb-Mokhtari, M. Sekkal-Rahal, P. Bleckmann, Vergoten,

Spectrochim. Acta 59A (2003) 2883.

P.D. Vasko, Ph.D. Thesis, CaseWestern Reserve University, U.S.A., 1971.

[36] D. Vasko, J. Blackwell, J.L. Koenig, Carbohydr. Res. 29 (1973) 123.

[37] H.S. Isabell, F.A. Smith, E.C. Creitz, H.L. Frush, J.D. Moyer, J.E. Stewart,

Res. Natl. Bur. Stand., Sect. A 59 (1957) 41.

[38] M. Kacurakova, M. Mathlouthi, Carbohydr. Res. 284 (1996) 145.

[39] M. Kanou, K. Nakanishi, A. Hashimoto, T. Kameoka, Appl. Spectrosc. 59 (2005) 885.